Software and Systems Modeling (2023) 22:1397-1425
https://doi.org/10.1007/s10270-022-01065-2

SPECIAL SECTION PAPER l‘)

Check for
updates

Design and evaluation of a collaborative UML modeling environment
in virtual reality

Enes Yigitbas' - Simon Gorissen’ - Nils Weidmann' - Gregor Engels’

Received: 15 March 2022 / Revised: 16 September 2022 / Accepted: 2 November 2022 / Published online: 19 November 2022
© The Author(s) 2022

Abstract

Modeling is a key activity in conceptual design and system design. Through collaborative modeling, end-users, stakeholders,
experts, and entrepreneurs are able to create a shared understanding of a system representation. While the Unified Modeling
Language (UML) is one of the major conceptual modeling languages in object-oriented software engineering, more and more
concerns arise from the modeling quality of UML and its tool-support. Among them, the limitation of the two-dimensional
presentation of its notations and lack of natural collaborative modeling tools are reported to be significant. In this paper, we
explore the potential of using virtual reality (VR) technology for collaborative UML software design by comparing it with
classical collaborative software design using conventional devices (desktop PC/laptop). For this purpose, we have developed
a VR modeling environment that offers a natural collaborative modeling experience for UML Class Diagrams. Based on a
user study with 24 participants, we have compared collaborative VR modeling with conventional modeling with regard to
efficiency, effectiveness, and user satisfaction. Results show that the use of VR has some disadvantages concerning efficiency
and effectiveness, but the user’s fun, the feeling of being in the same room with a remote collaborator, and the naturalness of

collaboration were increased.

Keywords Collaborative modeling - Virtual reality - UML

1 Introduction

In modern software development, collaboration between
developers is one of the driving factors that determines the
quality and speed at which projects can be realized. One
central artifact of communication and discussion in software
engineering are models [50]. The Unified Modeling Lan-
guage (UML) with its associated diagrams is one of the most
well-known general-purpose modeling languages in software
engineering and is considered by many as “lingua franca”
for software engineers [35]. However, researchers and soft-
ware designers have realized the insufficiency of UML in its
expressiveness. The expressiveness of a conceptual model
depends on the set of language symbols used for representa-
tion. Since UML is restricted to a two-dimensional plane,
these insufficiencies concerning expressiveness include a

Communicated by Shiva Nejati and Daniel Varro.

B Enes Yigitbas
enes @mail.upb.de

I Paderborn University, Zukunftsmeile 2, 33102 Paderborn,
Germany

lack of dynamic expression and interaction ability between
groups of remote designers [18,32] as well as the complex-
ity for large models [13]. Furthermore, the authors in [6]
argue that the dissatisfaction of developers with UML tools
is one of the reasons it has not been adopted more univer-
sally, exemplifying the need for improving the tool support.
Since the COVID-19 pandemic has spread around the world,
this need for good UML tool support has only increased.
Many educational institutions, like schools and universities,
around the world, have been forced to switch to online educa-
tion settings to support social distancing. Likewise, millions
of workplaces wherever possible were transitioned to home
office. To enable collaboration for software engineers in such
situations, tools are needed that offer support for creating and
discussing models from remote locations. While classical
modeling applications, like Lucidchart [26] or GenMyModel
[2], support remote collaboration, they do not overcome the
mentioned issues with regard to visualization and collabora-
tion as they are mostly relying on a 2D UML notation and
do not support a natural way of collaboration comparable to
editing a model on a whiteboard while situated together in
one room.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01065-2&domain=pdf

1398

E.Yigitbas et al.

Virtual reality technology, on the other hand, is becom-
ing increasingly sophisticated and cost-effective and can be
applied to many areas such as training [56], robotics [58],
education [61], finance [52], and even Information Systems
(IS) research [51], to simulate a real environment or repre-
sent complicated scenarios. Modern head-mounted display
(HMD) virtual reality (VR) devices have several technolog-
ical capabilities that are not present on conventional devices
(desktop PC/laptop): (1) stereoscopic 3D images, (2) six
degrees of freedom, (3) hand presence support, and (4) 3D
spatial voice chat. Since HMD devices show a slightly dif-
ferent image to each eye, they can invoke the perception
of a truly 3D virtual world that the user inhabits. These
STEREOSCOPIC 3D IMAGES are more in line with the visual
experience of the real world compared to images on a 2D
screen, since people also perceive the real world in 3D, not
in 2D. In VR, users can also look around in the virtual world
by simply moving their heads, like they would in a real envi-
ronment. In addition to this rotational movement, modern
VR devices can also track the positional movement of a user,
independent of the direction the user moves in. This means
the user has SIXx DEGREES OF FREEDOM (three rotational
and three positional axes) in her/his movement and the VR
system can adapt the view and position of the user in the vir-
tual world accordingly. Additionally, typical VR controllers
are used single-handedly with each controller representing
one hand in the virtual world. This HAND PRESENCE SUP-
PORT allows a user to make natural gestures like grabbing
an object and pointing at things to interact with the virtual
world. With the means of 3D SPATIAL VOICE CHAT, it is
possible to make users feel like the voices of their collabora-
tors come with the volume level (distance-based) and from
the direction that their virtual representations (i.e., Avatars)
are in. Furthermore, gamification is an essential concept that
is highly associated with VR technology. The goal of gam-
ification is to create a gameful experience for the users of
a service in order to improve motivation to engage with an
application or task [21].

Overall, the fast development in VR concerning prototyp-
ing [23] and engineering of VR applications [57] as well as
the mentioned technological advances allow us to extend the
research field to improve the quality of UML and collabora-
tive modeling. Thus, the main goal of this paper is to explore
the potential of using VR technology for collaborative UML
software design by comparing it with classical collabora-
tive software design using conventional devices (desktop
PC/laptop). For this purpose, in our previous work [53], we
have developed a VR modeling environment, called VmodIR,
that offers a natural collaborative modeling experience for
UML Class Diagrams. In the present work, we build up on
the VmodIR solution idea and extend it by several aspects.
First of all, we have updated our literature survey on collab-
orative modeling tools and present a more detailed analysis

@ Springer

of related approaches in this field. Furthermore, we elabo-
rate on the conceptual solution by covering several aspects
such as model synchronization, visualization, and editing in
VR. Similarly, the technical details for implementing our col-
laborative UML modeling environment in VR are presented
in more depth compared to our original work. Finally, we
present the evaluation of our work based on a user study.
Here, we have compared collaborative VR modeling with
conventional modeling with regard to efficiency, effective-
ness, and user satisfaction. In addition, we present further
results about motivational aspects of VR for modeling pur-
poses. The main results of our usability evaluation show that
the use of VR has some disadvantages concerning efficiency
and effectiveness, but the user’s fun and motivation, the feel-
ing of being in the same room with a remote collaborator,
and the naturalness of collaboration were increased.

The rest of the paper is structured as follows. In Sect. 2, we
present and discuss the related work. In Sect. 3, we describe
the conceptual solution of our VR-based collaborative mod-
eling environment VmodIR. In Sect. 4, we show the details
of the implementation of VmodIR. In Sect. 5, we present and
discuss the main results of the usability evaluation. In Sect.
6, we conclude the paper and give an outlook for future work.

2 Related work

Model-based and model-driven development methods have
been discussed in the past for various application domains
[5]. In the following, we draw on prior research into collab-
orative modeling, 3D modeling, and immersive modeling.

2.1 Collaborative modeling

In previous work, the topic of collaborative software model-
ing was already researched from different perspectives [40].
In [8], the authors present a distributed UML editor that
aims to transfer collaborative discussion and editing of UML
models from regular meeting rooms to remote settings using
regular computers. Reckeretal. [41] proposed a system based
on the Second Life platform' where users can collaboratively
create process models while being represented by an avatar
with the ability to voice chat. The models are represented on
a tile-based 2D plane in a 3D world on which the avatars can
walk around. The application is created with desktop sys-
tems in mind. They evaluate their work with a small user
study to gain feedback from users that collaboratively cre-
ated a process model. Results indicate that the users found
the interaction to be very natural and the collaboration to
work very well in the virtual world, demonstrating the bene-
fit of using a 3D world and virtual avatars to represent users.

! https://secondlife.com/.

https://secondlife.com/

Design and evaluation of a collaborative UML modeling environment in virtual reality 1399

In addition, a collaborative learning environment for UML
modeling, called CoLeMo, is presented in [11]. CoLeMo is
designed for students studying UML modeling. It can also
be used as a platform for collaborative design of software.
Furthermore, [15] introduces an approach to a real-time syn-
chronous collaborative modeling of software systems using
3D UML.

Besides these approaches from research, there are also
some commercial tools supporting collaborative software
modeling. Lucidchart is a web-based commercial tool for
collaboratively creating diagrams [26]. It includes support
for many diagram types and modeling languages like UML,
Business Process Model Notation (BPMN), Enterprise Rela-
tionship models, and more. The tool shows a 2D canvas
where standard 2D diagrams can be created. Since Lucid-
chart is web-based, it can be used by any device that runs
a modern browser, although as with many web-based con-
tents the experience can be assumed to be best suited to the
use on desktop and laptop computers and is not specifically
adopted to the possibilities of VR devices. Released by Axel-
lience in 2014, GenMyModel [2] is a web-based tool similar
to Lucidchart. GenMyModel supports a subset of the most
commonly used UML diagrams, i.e., Class, Use Case, Com-
ponent, Object, State, Deployment, Activity, and Sequence
Diagrams. Axellience describes the mode of collaboration as
similar to how Google Drive or Microsoft Office online col-
laboration works. So users can see where their co-workers
are editing the model but do not have an integrated voice chat
to discuss those changes. This has to be done via an external
tool. The system aims to support the language’s visual rep-
resentations according to their official definitions and thus
only presents 2D models to the users.

While the above-described approaches mostly support
collaborative modeling based on standard 2D UML dia-
grams, they do not support immersive VR. Immersive VR,
however, is essential for enabling a natural and more inter-
active way of remote collaboration in modeling.

2.2 3D modeling

While most of the existing UML modeling tools rely on a 2D
representation, there are also ones covering a 3D model rep-
resentation and UML visualization. The main goal of these
approaches, which will be described in the following, is to
discover whether using a 3D perspective has a substantial
impact on model comprehension.

The authors in [38] presented a conceptual system that
visualizes UML Class and Sequence Diagrams in 3D. The
Sequence Diagrams are displayed in the context of the
Classes they belong to and animated to emphasize their con-
nection. Furthermore, the authors in [63] have also discussed
a conceptual approach to extending 2D UML Diagrams to
the third dimension. They introduce some modeling qual-

ity attributes and explain how VR can improve the UML
modeling quality according to these attributes. For exam-
ple, they argue that the model’s “understandability” can
be improved through VR’s “Immersion” and “Stereopsis”
(stereoscopic 3D presentation) features. Subsequently, they
provide some examples of a Class Diagram and a Sequence
Diagram that are visualized in 3D and demonstrate their
advantages in comparison with a 2D representation. Her-
pich et al. [22] presented VirtualLab, a system focused on
offering a new learning environment for teaching software
engineering, specifically UML, in a 3D virtual environment.
Modeling is possible through a number of panels embed-
ded into the virtual environment. Each panel shows one web
instance of the GenMyModel modeling tool (cf. Sect. 2.1).
Their evaluation focuses on the learning effectiveness of their
prototype. The underlying technology they use for the virtual
world is Open Simulator.

In [42], the authors proposed VisAr3D, a 3D visualization
tool for UML models to make large models easier to com-
prehend, especially by inexperienced modelers. The system
automatically converts a 2D UML model from an .xmi file
into its 3D representation. The virtual environment, the 3D
UML models are placed in, can be viewed through a web-
based app and does not support HMDs. Their prototype is
not a model editor, however, it only visualizes UML models
in 3D. This approach was evaluated based on a user study
assessing the effect of the 3D compared to a 2D representa-
tion. The main results show that the 3D representation aided
the understandability of large models, “increased students’
interest” and supported teaching purposes [42]. In [25], the
authors described an implementation that visualized a pro-
cess model in a 3D virtual world on a desktop computer. It is
a training system intended to aid a single user in understand-
ing Business Process Models through 3D visualization. They
evaluate how the 3D representation assists the user in learning
the modeled process compared to a standard 2D model repre-
sentation. They conclude that the 3D representation provides
a noticeable learning benefit. It is not a modeling tool, how-
ever, only a visualization and training tool. Further similar
examples for approaches that make use of a 3D representation
of UML models can be found in [10,27,48,49]. In summary, a
modeling approach that combines and integrates the aspects
of 3D modeling, collaboration, and VR in one solution is not
fully covered and yet existing.

2.3 Immersive modeling in AR and VR

In the following, augmented reality (AR)- and virtual reality
(VR)-based approaches for modeling purposes will be briefly
described and discussed. Although VR is our main focus,
we included AR approaches to cover immersive modeling
approaches on the whole.

@ Springer

1400

E.Yigitbas et al.

AR is closely related to VR with the main difference being
that VR immerses a user in a completely virtual world while
Augmented Reality (AR) does not isolate the user from the
real world by displaying virtual objects in the real environ-
ment. In general, AR has been already applied for different
aspects such as robot programming [54], product configura-
tion (e.g., [19,20]), planning and measurements [60] or for
realizing smart interfaces (e.g., [24,55]). To be more specific,
example approaches that apply AR for software modeling are
as follows. The authors in [28] have presented a framework
that is supposed to allow editing and viewing UML models
in a 3D space through the Microsoft Hololens AR Glasses.
Their approach is to overlay 3D model elements over real
scenery so the user can move around and inside the model
while not being shut off from the real world. In this way,
their prototype only displays static objects that are meant
to represent UML models. Similarly, in [39], the authors
proposed a system that aims to make learning UML more
accessible by displaying it in 3D as overlays to the natural
environment using the Microsoft Hololens. The system sup-
ports creating and editing UML Class Diagrams but is only
intended for single users and does not support collabora-
tion. Furthermore, in [44] the authors introduce the concept
of “HoloFlows” to support the modeling of processes for
the internet of things in mixed reality. A similar solution is
introduced in [4] where the authors present an approach for
supporting domain-specific modeling environments based on
AR. The main drawback of AR-based solutions for modeling
is the small field of view which narrows down the possibil-
ities for modeling support. Therefore, we have explored an
alternative solution in VR.

Focusing on VR-related approaches for software model-
ing, we can see that many previous works already have seen
the potential in using VR for improving modeling activities.
In [33], for example, the authors have presented a system
that analyzes an object-orientated code base and visualizes
its classes, attributes, and relations automatically in a 3D
virtual environment that users can inspect inside a Cave Auto-
matic Virtual Environment (CAVE). So it supports VR only
in a broader sense. The application is not networked and
does not support editing the model, it is only a visualization
tool. In [12], the author has proposed a system for HMD
VR devices that can import a Finite State Machine (FSM)
and visualize it in a game-like environment where players
stand on islands representing states and can change islands
via different boats representing the possible transitions. It
is a single-player game environment meant for educational
purposes and does not support UML modeling with actual
UML Diagram elements or remote collaboration. In [34],
the authors have presented an HMD VR system for visu-
alizing process models in 3D. Therein, the models can be
annotated but not edited. They evaluated the effectiveness,
efficiency, and intuitiveness of the VR visualization in com-

@ Springer

parison with (1) paper and (2) desktop tool-based BPMN
and found that the effectiveness was equivalent between VR
and desktop, but task completion in VR was faster than with
the BPMN tool and the users found the VR controls very
intuitive. Zenner et al. [62] proposed a system that visualizes
an event-driven process chain (EPC) model in 3D for a user
to explore using an HMD VR system and real-world hap-
tics. The approach is focused on aiding the learning process
and is intended for single users. In a user study focusing on
model understandability and user experience comparing the
HMD VR experience with viewing a 2D process model, they
yielded that users understand the model faster in 2D while
“the users’ interest” is higher in VR. Pohler et al. [37] imple-
mented a VR-based process model editor where users can
collaboratively create business process models. It supports
HMD and desktop systems with native voice-chat. The mod-
eling language used was a scaled-down version of BPMN that
was customized for ease of use and intuitiveness. They eval-
uated the system with a small user study focused on usability
with users stating the modeling in 3D was especially help-
ful since the modeled processes were semantically linked to
virtual objects in the scene.

In summary, existing immersive modeling tools do not
support remote collaborative modeling where UML models
can be created and edited with multiple stakeholders in a
shared virtual environment.

2.4 Discussion

Table 1 shows the combined overview of the previously
discussed contributions in regard to what features their pro-
totypes support and what features are only conceptually
discussed.

This table shows that, in the area of AR and VR modeling,
3D models are examined quite often. This is expected as a
true 3D representation is one of the technological benefits
of many VR and AR devices compared to regular computer
screens. Additionally, the table exemplifies that while UML
is covered rather often in work targeting desktop systems
and conceptual discussions on 3D UML representations have
been published in the past, there are still only a few contribu-
tions using UML in a VR or AR context. Here lies an open
research gap that still needs to be filled.

While UML has been given little attention in AR and
VR, there are some contributions in this field covering other
modeling languages like BPMN and EPC. They usually also
include a translation from the two-dimensional formal def-
initions to a 3D representation of the models and indicate
that this offers tangible benefits to aspects like understand-
ability and motivation [39,42]. Although this is still in need
of scientific proof, it can be expected that these benefits are
independent of the modeling language and will transfer to
3D UML models in VR.

Design and evaluation of a collaborative UML modeling environment in virtual reality 1401

Table 1 Overview and comparison of related approaches

Legend

@ Supported
O Concept Discussed
- Not Supported

Features

Papers Remote 3D

UML Immersive VR

Collaboration | Models

Visualization Editing

Boulila [8]

Recker et al. [41]
Chen et al. [11]

Ferenc et al. [15]
Lucid Charts [23]
GenMyModel [2]

Radfelder et al. [38]
Zhang et al. [63]
Herpich et al. [22]

oo

Rodrigues et al. [42]
Leyer et al. [26] -
Mikkelsen et al. [28] -
Reuter et al. [39] -
Seiger et al. [44] -

Brunschwig et al. [4] -

0 0000 O

Maletic et al. [33] -
Dengel [12] _

Oberhauser et al. [34] -

Zenner et al. [62] -

Pohler et al. [37] o

000000

® 0
® 0

Collaboration seems to be very prevalent on desktop
computers with very little emphasis on itin VR and AR appli-
cations. This is possibly due to AR and VR devices in their
modern form being relatively new combined with applica-
tions being generally more complex to develop if they support
collaboration compared to only supporting single users. The
only collaborative modeling environment in VR or AR we
found was Pohler et al.’s system [37] which does not support
UML and only uses 3D structures of 2D objects instead of
fully 3D model elements.

Therefore, our literature review has shown that the four
core features that identify a collaborative UML modeling
environment in VR have not been implemented in an appli-
cation together before. However, all of them are present
individually in different works about AR, VR, or desktop
prototypes. This means there are multiple sources an imple-

mentation of a collaborative UML modeling environment in
VR can draw from to make informed design decisions, while
this new implementation still comprises a novel approach.
Furthermore, our literature review indicates that no study so
far has focused on a comparison between VR and desktops
in regard to the naturalness of collaboration in the context
of modeling yet. Therefore, the results of this review imply
that the approach we have taken in this work is a novel con-
tribution, both in regard to the implemented solution and its
evaluation.

3 Solution overview

The system overview of our VR-based collaborative mod-
eling environment VmodIR is shown in Fig. 1. The top half

@ Springer

1402

E.Yigitbas et al.

Fig.1 System overview of
VmodIR @)

w—lnteracts with—>4

User A

VR Device A

N MetaQuest2

— l—l

Display Image ‘g, i

View Orientation and Position,
Controller Input

VRKeys

£]

Text Input A

1

Change Texts

C

3D Model
Custom
Techlllclﬂogy

Change Texts

Lt

Text Input B

VRKeys

Virtual Environment

[1

Virtual Character A

& unity

Input Text

_
oculus-spk

Synchronize
Movements &
Communication

LI
Network @ r Cloud
Synchronization . (external)
Wy, Synchronize
¢ photon,

Synchronize
Movements &
Communication

L

Virtual Character B
Input Text

oculus-spk

©)

WInteracts with—>1

User B

of this figure represents User A and the Virtual Environment
this user accesses through a VR Device. The bottom half sym-
metrically shows a remote collaborator, User B, and the VR
Device this user employs to access the same shared Virtual
Environment. Through the VR Device, each User is repre-
sented in the Virtual Environment as a Virtual Character. The
View Orientation and Position of the VR Device together with
the Controller Input controls the Virtual Character while the
Virtual Environment with its content is displayed from the
Virtual Character’s perspective inside the VR Device.
Through the Virtual Character, each User interacts with
the elements inside the Virtual Environment: The 3D Model
can be edited by either directly editing model elements (e.g.,
creating, deleting, or moving them) or through the VR Text

@ Springer

View Orientation and Position,

%Controller Input

|_|

Display Image /(")

VR Device B
00 MetaQuest2

Input component that is used to edit the text inside the 3D
Model, for example, the Class names. All those changes to
the model are synchronized between users through the Net-
work Synchronization component. In the case of this solution,
the 3D Model is a three-dimensional UML Class Diagram,
but theoretically, this could be adapted to any kind of concep-
tual model. Through their Virtual Characters, Users can also
interact with each other via Network Synchronization which
transmits their voices and synchronizes their body and hand
movements. This is visualized in Fig. 1 as the Synchronize
Movements & Communication interface between the Virtual
Characters and the Network Synchronization. The Network
Synchronization component then ensures that the Virtual
Environment and its content are synchronized between the

Design and evaluation of a collaborative UML modeling environment in virtual reality 1403

Users through the Cloud. Tt offers several different services
that can be used by other components to synchronize all nec-
essary aspects of the Virtual Environment. In the following,
each of the main components Virtual Environment, Network
Synchronization, Virtual Character, 3D Models, and VR Text
Input will be described in more detail.

3.1 Virtual environment

The Virtual Environment consists of all virtual elements that
are needed to provide a collaborative software modeling envi-
ronment. Within this environment, each user can see and
move around via a VR Device in 3D. As a design decision
for the Virtual Environment, we opted to use an open space
instead of a closed one to not introduce some unrealistic
environment behavior or limit the user’s ability to create large
models. Since there is no open environment that could be con-
sidered natural for creating conceptual models, any space that
offers a planar ground for the user to walk on could be cho-
sen. We decided on a grass field under a blue sky because it
does not limit the 3D space available to the user and depicts a
pleasant real-world environment that users are familiar with.

3.2 Network synchronization

All elements inside the Virtual Environment have to be syn-
chronized through the Network Synchronization component.
We will describe how this networking generally works in
this conceptual solution. The networking has a server-based
architecture where all users connect to a server and the server
synchronizes instances of a Virtual Environment between all
users that are currently in that environment. It is important
to understand that a networked environment is not a singu-
lar environment. Instead, on each user’s VR Device (clients)
a local version of the networked environment exists, so the
user can look around in it and interact with it. All the changes
the user can thereby make inside the Virtual Environment,
like moving their Virtual Character, are communicated to
the server so it can update its reference representation of the
networked environment and forward the changes to the local
environments of all other clients. These clients then apply the
changes accordingly to their local copies of the environment.
This way, the local environments on all clients are always kept
in sync with the server’s networked environment. As shown
on the top of Fig. 2, three components can be used to synchro-
nize objects inside the Virtual Environment: The Movement
Synchronization Service, the Event Synchronization Service,
and the Voice Synchronization Service.

The Movement- and Event Synchronization Services can
be used in a more general way. The difference between them
is that the Movement Synchronization Service is dedicated to
rapidly and frequently changing information, that needs to be
synchronized many times per second. In the case of move-

ment, this is needed to show the movement of an object that
is moved by a remote collaborator fluently to the local user.
The Movement Synchronization Service also deals with track-
ing if a synchronized object that can be moved gets created
or deleted. The Event Synchronization Service, on the other
hand, is supposed to synchronize arbitrary events that happen
rather infrequently and therefore only have to be synchro-
nized occasionally, once they occur, instead of the constant
synchronization needed for movement. This provides flexi-
bility where something that only occasionally changes (like
the name of a Class for example) can be synchronized via
the Event Synchronization Service and otherwise does not
consume network bandwidth while things that often change
and have to be synchronized many times per second, like the
movement of a Class or a Virtual Character’s Virtual Hands,
can be synchronized fluently via the Movement Synchroniza-
tion Service. Finally, the Voice Synchronization Service is
dedicated to synchronizing the voices of users to enable voice
chat inside our solution.

3.3 Virtual character

In VR, people can be represented by 3D characters through
an avatar with a body, head, and hands. This way, a user can,
for example, move around in the virtual environment and
point with her/his finger in real life and the VR Controller
can reproduce this gesture on the Virtual Character’s hands.
Since this has the possibility to make discussions about mod-
els in VR much more natural than possible on PCs, these
features were also included in the design of our solution. The
hands’ gestures are synchronized across the network for each
user, along with the positional audio of voices and the posi-
tions and orientations of Virtual Characters. Our solution
supports this form of natural movement, where the Virtual
Character and therefore the user’s view of the world changes
according to the physical VR Headset movement. This is the
ideal scenario for movement, where there is enough physical
space available to the user to move anywhere the user would
want to go in the virtual world. However, this is hardly a real-
istic scenario since the models creatable in our solution can
theoretically become arbitrarily large, meaning that the user
would need an infinitely large physical space to move around
in. Therefore, a secondary movement method, namely tele-
portation is required, that allows a user to move their Virtual
Character through the environment without moving in the
physical world. Teleportation involves the user entering a
teleportation mode, for example through pressing or holding
a specific button on one of the VR Controllers and then aim-
ing the controller at a spot that the user wishes to teleport to.
When either releasing the button or pressing it again the tar-
get position is selected and the Virtual Character is instantly
teleported to the aimed location. With these two movement
methods—natural walking and teleportation movement—the

@ Springer

1404

E.Yigitbas et al.

Fig.2 Detailed view of the 3D
Model from Fig. 1 and its

relations to the Virtual Movement
Character, Network Synchronization
Synchronization, and the VR Service

Text Input

T

Network Synchronization

£]

Event Voice
Synchronization {l Synchronization
Service Service

T

&

Synchronize Model
Element Movements

Synchronize change events to
structure and content of the model

3D UML
Visualization

3D Model T

Change
Connection State

]
]

Add model
elements

O

Connection {l Class Content
System System
\5; Change texts
LJ
Move / delete A.dd / Delete VR Text Input
model Fields and
elements Operations
Input text

HOL

[F
Creation Menu

5+

Press menu \Virtual Character/I /‘—'

Body & Head,
Audio Listener,
Audio Source

Hands

user can reach any position in the Virtual Environment inde-
pendent of the size of physical space available to the user
while still moving in a rather natural way.

3.4 3D models

To take full advantage of the stereoscopic 3D images that VR
Devices can present to the user, the UML Class Diagrams
this work focuses on, need to be represented in 3D as well.
Additionally, the user needs a way to edit this 3D model,
for example, by changing the text on Classes, creating new
model elements, or deleting old ones. These aspects will be
described in the following. Figure 2 shows a detailed view of
how the 3D Model from Fig. 1 is set up and with which parts
of the Virtual Character and the Network Synchronization
components it interacts. Note that those parts of the Virtual
Character and Network Synchronization not relevant for the
3D Model are occluded here for a better overview.

In the following, first, a description of the design of the
3D UML Visualization without its interactions with other
components will be provided. All of the interactions and
other components are changes to the model that can be made
by the user through the Virtual Character which are then
synchronized to the other clients through the Network Syn-

@ Springer

£]

"7 Not Relevant for the 3D Model

chronization. This editing of the 3D Model will be discussed
afterward.

3.4.1 3D UML visualization

Usually, modeling languages are only specified with 2D
visual representations. UML is no exception to that rule. We
could stick to those same 2D shapes inside a 3D world with
users being able to position the 2D shapes freely in 3D. How-
ever, we believe using 3D shapes instead of 2D ones will
likely result in a more natural experience for users because
the real world only consists of 3D objects and we do not want
the model elements to seem like foreign bodies in the Virtual
Environment. The main shapes used to visualize UML ele-
ments in the 2D specification are rectangles and lines with
different forms of arrowheads at the end of those lines. To
ensure that users familiar with the 2D representations can
learn the 3D ones easily, we tried to find natural equivalents
of the 2D shapes in 3D. The equivalent of rectangles in 3D
is cubes and cuboids, while lines are best represented by
thin tubes (see Fig. 8c). A challenge of a 3D visualization
of UML Classes is the text representation inside them. A 2D
Class only has one side that the text is displayed on which
always faces the user. Since the Class rectangles known from
2D are most similar to Cuboids in 3D, every UML Class is

Design and evaluation of a collaborative UML modeling environment in virtual reality 1405

visualized as a cuboid in our solution (see Fig. 8a). It can be
assumed that the users can see at most three of the six sides of
acuboid at any given time. If the Class’s cuboid only displays
the text on one side, this side could, thus, be hidden depend-
ing on the view direction that the user has toward the Class.
Rotating the cubes automatically so the text side always faces
the user would be a possible solution to that. However, we
wanted the user to be the only entity changing the model’s
appearance, so the model seems more stable and thus natu-
ral. For these reasons, we display the text associated with a
Class on all sides of the Class. This means that every Class
side basically shows the same 2D Class in a notation similar
to 2D UML. Since all these sides belong to a single Class, it
is important that all sides always show the same content.

3.4.2 Model editing

A central aspect of any modeling tool is the control regarding
how to create and manipulate the actual models. This sub-
section will discuss how a user can create and manipulate a
3D Model through the system visualized in Fig. 2. First, we
will cover how a Virtual Character can create and delete
model elements from the 3D UML Visualization. Subse-
quently, we will cover how these elements can be moved and
how, based on that movement, Connections can be attached
to and detached from Classes via the Connection System.
Lastly, it is explained how the content of a Class can be edited
through the Class Content System. Note that the internals of
the VR Text Input component will be covered at the end of
this section.

Creating and Deleting Elements: To create new model ele-
ments inside the 3D Model, some form of Graphical User
Interface (GUI) (i.e., menu) is needed. Such a Creation Menu
is shown in Fig. 2 in the bottom left corner. To ensure consis-
tency within the solution, the general control concept used
for the Creation Menu should also be used for other GUIs
inside the application.

There are two general possibilities when it comes to con-
trolling menus in VR: Laser pointer controls and intersection
controls. The system menus of the Meta Quest 2% and Meta
Rift S* VR devices are examples of laser pointer-based
menus: The user has a virtual laser pointer attached to one of
her/his hands which works as a mouse pointer and uses a but-
ton to select interface elements that the laser pointer points
at. Intersection controls aim to make the interaction more
natural than laser pointing at elements, by having the user
push buttons and select elements by moving the controller,
and thereby the virtual hand, into a button to push it down,
similar to how a real button would work. Therefore, one

2 https://www.oculus.com/quest-2.

3 https://www.oculus.com/rift-s.

main difference between these methods is that intersection-
based methods require more movement since the user has
to physically reach the elements while laser pointer controls
are usable from a distance. The decision between the two is
therefore a trade-off between an option that can be assumed
to be more natural to users and an option that may be more
convenient and versatile. Since this solution is supposed to
offer only one method of interacting with GUI elements for
consistency reasons, we chose laser pointer controls for inter-
acting with menus. The laser pointer can be switched on or
off, so it does not distract from the modeling interactions
while the user is not controlling GUIs.

The second part of the GUI design, besides the controls, is
the visual representation. In many applications, and also, for
example, in the Meta Quest’s system menus, the VR GUIs are
2D panels, like screens, placed in the virtual environment. An
alternative to that would be representing Ul elements as vir-
tual three-dimensional objects like discussed by Greenwald
et al. [16], to give the interface elements more plasticity and
make them closer to real objects. This is especially sensible
when the interface elements represent real-life objects, like
Greenwald et al.’s painter’s palette. For some GUI elements
in this solution, such a natural equivalent is not obvious or
does not exist. For others, using them could be distracting.
For example, buttons to create new model elements could
be small versions of these elements. This has the problem
that it could lead to confusion about if those elements are
already created objects or just the creation buttons. This is
why we decided to stick to 2D representations for all interface
elements which also ensures consistency within the applica-
tion, as discussed before. This way, especially the creation
buttons cannot be confused for parts of the model or the
environment. Similar to VR apps like AltspaceVR [31] and
Spatial [45], the Creation Menu sticks to the user’s Virtual
Character and follows the horizontal view direction of the
user so it is always easy to find. The menu is positioned to the
bottom of the user’s Virtual Character so it does not occlude
the user’s vision when looking straight ahead or up during
regular modeling. It is also tilted to face the user for easier
reading. This form of the menu will be familiar to regular VR
users while those unfamiliar with VR do not have to get used
to a different menu representation or control scheme between
the system menus of many VR devices and the in-application
menus making it easier to use for both seasoned VR users
and novices alike.

Object deletion works very similarly. The main difference
is that there is no dedicated Delete button on each model ele-
ment and no deletion menu analogous to the Creation Menu.
Instead, the user can activate a deletion mode via a controller
button. In this mode, the laser pointer can be used to select
a model element and delete it by pressing the enter button
also used for GUIs. This system makes sure that creating an
object by pointing the hand at a create button and pressing the

@ Springer

https://www.oculus.com/quest-2
https://www.oculus.com/rift-s

1406

E.Yigitbas et al.

enter button works similarly to deleting. This should make it
rather easy to learn and remember the concepts of how model
elements are created and deleted.

All of the changes to the 3D UML Visualization through
creation and deletion of model elements are synchronized
across the network through the Movement Synchronization
Service (cf. Fig. 2). This is done because all of these model
elements can also be moved and this way the Movement
Synchronization Service can handle the entire life cycle of
a virtual object from being created, via being moved around,
to being ultimately deleted. How this movement works in
detail will be discussed in the following.

Moving Model Elements: One central interaction in any
modeling application is moving model elements. A UML tool
is no exception: Classes have to be moved around and Con-
nections, e.g., Associations, have to be moved and attached
to the different Classes. In a VR application, especially with
our focus on natural interactions, there is one obvious way
to design this feature: Grabbing. In Fig. 2, this is visualized
as the Move model elements interface between the Virtual
Character’s Hands and the 3D UML Visualization.

In many VR applications, objects can be grabbed with
grab buttons that exist on many VR controllers. These buttons
are explicitly designed to simulate the real movement of the
fingers when grabbing an object by being positioned under
the left and right middle fingers, respectively. The movement
of the middle finger toward the palm of the hand simulates
the hand closing when grabbing an object and releasing it
will let loose that object. To emphasize the notion that users
are actually grabbing and holding objects, we did not include
a feature to grab objects from a distance in our design.

For Classes, this grabbing interaction is therefore very
straightforward: A user intersects her/his VirtualCharacter’s
Hand(s) with the Class and presses and holds the grab button
tomove it around. While the button is pressed, the Class sticks
to the Hand and once it is released, the Class stays in its new
position. During that process, the Class behaves like a real
object would, meaning it can be turned around and moved
in whatever way the user wants. This is supposed to make
the object’s behavior easy to understand and predictable due
to its naturalness. Of course, a notable exception to that is
the lack of gravity since with it, objects would just fall to the
ground and it would be impossible to create truly 3D models.

The second main type of model elements supported are
Connections which, in their most basic form, consist of a
straight line possibly with one of several arrow-shapes at
one end. In many UML modeling and diagramming tools,
like Microsoft Visio [30], or Lucidchart [26], each end of a
connection can be attached to a Class and will stick to that
Class when the Class is moved. They are typically visualized
as lines connecting visual dots. These dots can be moved and
attached to elements like Classes. For non-angled Connec-

@ Springer

tions that only consist of one straight line, only the start and
the end of the line need such moveable points. To provide a
level of familiarity between the 2D tools and our 3D solu-
tion, it is sensible to use a similar mechanism for moving and
attaching connections.

The movement and attaching of connections in a 2D pro-
gram is usually handled by moving the dots that belong to a
connection with a mouse. The natural equivalent of dragging
and dropping elements with a mouse is grabbing and moving
them in VR with the VR controllers since these are the only
pointing instruments a VR user has. Using the grab buttons
on the controllers for this “grabbing”-action ensures consis-
tency between the control methods used for moving Classes
and Connections. Thus, users are able to grab and move the
start and end points of a Connection with their Hands like
they can grab a Class.

Besides moving a Connection, users also have to be able
to attach each of its ends to a Class, so that when the Class
moves, the Connection sticks to it. This is done by releasing
the respective end while that end points toward the Class
it should attach to. The Connection automatically searches,
along the direction of its line, for a Class that it can attach
the previously grabbed end to. This makes sure the attaching
process is easy to perform since it is directly linked to moving
the connection and does not require additional interactions.

The Connection System shown in Fig. 2 tracks what con-
nections are connected to which Classes. Therefore, when a
Class inside the 3D UML Visualization is moved, the Con-
nection System can instruct the connections attached to this
Class to update their positions, so it appears as they stick to
the Class while it is being moved. The internal structure of
the Connection System is shown in Fig. 3.

The ClassConnectionHub is a part of every Class and
tracks which Connections are attached to it. A Connection
consists of one GrabVolume at each of its ends and an Arrow-
Head which is the arrow shape at the target end of the
Connection. The GrabVolumes are the points of the Con-
nection that can be grabbed and moved.

Each Connection from the Connection System is bound to
a specific visual Connection from the 3D UML Visualization
providing that visual element with the respective functional-
ity. Likewise, each ClassConnectionHub is also bound to the
visual representation of one specific Class. The Connection
System therefore closely works together with the 3D UML
Visualization.

Figure 4 shows how this structure is used to move a Con-
nection’s end and attach it to a Class.

When one of the GrabVolumes is grabbed, it notifies the
Connection which detaches the respective Connection end
from the Class it is currently attached to. It does so by
updating its internal attachment state and notifying the Class-
ConnectionHub that its grabbed end is currently attached to
if there is one. This triggers a change event which is syn-

Design and evaluation of a collaborative UML modeling environment in virtual reality

1407

Fig.3 Internal structure of the
connection system

GrabVolume

N

originGrabVolume
targetGrabVolume

Connection 0.1 | ArrowHead

arrowHead

ClassConnectionHub 0.2 *
originClass connections
targetClass

Fig.4 Procedure of moving a
Connection’s end and attaching User grabs GrabVolume notifies
it to a class GrabVolume Connection

Connection detatches
the end that the

Attach Connection'
end to the Class's

ClassConnectionHub
via Event

chronized via the Event Synchronization Service (See Fig.
2).

As long as the GrabVolume is moved, the position, length,
and rotation of the Connection’s visual representation are
updated to always lead from the grabbed GrabVolume to the
other one. This transformation information is synchronized
via the Movement Synchronization Service of the Connec-
tion’s visual elements from the 3D UML Visualization.

When the GrabVolume is released again, the Connection
is notified by the GrabVolume that this loose end of the Con-
nection should try to attach to a Class again. The Connection
then searches along the direction of the current Connection
line toward the loose end for a ClassConnectionHub.

However, it specifically does not stop searching when the
line ends but goes further than that, so it finds a Class in that
direction if there is one, independent of if the Connection’s
line already touches it or not. When such a ClassConnec-
tionHub is found, the Connection attaches to the Class via
another networked event. The respective Connection catches
this event on every client and attaches itself accordingly
by updating its internal connection state and notifying the
ClassConnectionHub that the Connection just attached to it.
However, if no ClassConnectionHub is found, no network
event is sent and the Connection’s end stays loose.

This way, a Connection always knows to what ClassCon-
nectionHub—and thereby to which Class—each of its ends
is attached and the Connection can be moved and attached
to different Classes through grabbing and moving the Grab-
Volumes.

Additionally, each ClassConnectionHub knows which
Connections are attached to it. When a Class is grabbed and
moved, its ClassConnectionHub notifies the Connection to

Leave the
Connection's end

detached J

Yes*Q—No Ye

Is there a Class the
Connection's end can attach to?

GrabVolume marks from
ClassConnectionHub if it is
currently attached to one

No Is the GrabVolume still grabbed?

Update Visual
Connection to stick
to moved

GrabVolume

update their visual element, so the Connection stays fixed
to a specific point relative to the Class. That means that
the line’s orientation and length as well as the position of
the ArrowHead are updated to always connect the same two
points on the two attached Classes even while one or both of
them are being moved. This is synchronized across the net-
work through the Movement Synchronization, just like when
a Connection’s end is moved via a GrabVolume.

Class Content System: Besides setting up the structure of
Classes and their Connections to each other, another major
part of UML Class Diagrams are the contents of the Classes
themselves. This includes their names, the list of fields, i.e.,
attributes, and their list of operations, i.e., methods. The basic
visual setup of Classes, consisting of six mirrored sides on a
cuboid that shows the Class in a similar way to common 2D
representations, was already discussed before. The following
two subsections focus on how users can interact with them
and how changes on one side of a Class are synchronized to
the other sides and across the network, respectively.

Class Content Interaction The interactions with the Class
content are shown in Fig. 2 on the right from bottom to top:
The user’s Virtual Character can add and delete fields and
operations on a Class side with her/his hands and use the
VR Text Input component to change the textual content of
these Class elements. All the elements on all Class sides exist
within the Class Content System which captures changes and
synchronizes them across the network via the Event Synchro-
nization Service.

Since the actual content of a Class still consists of 2D
elements, primarily text, on a Cube’s side, it is visually not
very different from GUI elements. It is, therefore, logical
to use the same general interaction concept that users are

@ Springer

1408

E.Yigitbas et al.

4. Notify of changes

ClassSideElement

ElementGroup

Manages a group of elements.
Each Class side has one fields

Captures input on one element on
one side of the class.

1. Notify of element
deletion command

group and one operations group.
Forwards a value change towards
the correct element and creates /
deletes elements as needed.

4. Notify changed
group of changes

ClassSide

One Instance per Class side.
Forwards an incomming change to
the correct group of elements

If user deletes
(f ClassContentSynchronizer
element) N
—‘/ Synchronizes creations &
deletions of elements made on
one Class side across network
1. Notify of 1. Notify of elem;nt
change to local creation command
element value (If user creates
(If user changes element)

element text)
InsertElementButton (GUI Element)

Button that captures user input

\Z

ClassElementSynchronizer

(either fields or operations group)

VAN

2. Notify of element
deletion / creation
command

\Z

ClassSideMirror

Synchronizes value of one
ClassElement across the network 2. Notify of remote

change to an element

Replicates an incomming change
across all Class sides 3. Notify all sides of

changes

A Class inside the Class Content System

Legend
. One instance per Element (field or operation)

Class Name
. One Instance per Class Description

. One Instance per Class Side
Two Instances per Class Side

ﬁ One way communication

Note: Depending on what the user changes on a Class, the procedure starts
with the respective communication way marked with ,, 1.

Fig.5 The architecture of the class content synchronization system

already familiar with from other GUIs for the Class content
as well. Thus, laser pointer-based controls are used. This
means that input fields like the Class name, for example, can
be selected by pointing the right hand at it and pressing a
dedicated “select” or “enter” button, analogously to what the
left mouse button is on traditional input devices.

As mentioned before, the name is only one type of text in
a UML Class that can be edited. The other major types are
fields and operations. Some 2D tools, like Lucidchart [26]
and Microsoft Visio [30], represent the two regions in a Class
where fields and operations can be added as one input field
each that spans multiple lines. Others let the user add fields
and operations individually where each one is represented
by a single line input field, possibly with additional control
elements in that line.

This decision has some implications on how much collab-
oration might be possible during the creation of one Class.
If two users want to simultaneously add different fields to a
Class, for example, to split up the work, using a single input
field for all fields could result in synchronization problems
because both users are editing the same input field at the same
time. This is especially relevant to our VR solution since it
allows multiple users to stand in front of different sides of the

@ Springer

Class and edit fields and operations on it that are then mir-
rored to the other sides. Therefore, we chose a single input
line per field/operation approach, so each user can indepen-
dently of each other edit such an element, even if they belong
to the same Class.

These controls enable the user to create models collab-
oratively while always being able to see where the other
collaborators are and what they are changing on the model.

Class Content Synchronization The Class Content System
from Fig. 2 deals with the synchronization of the Classes’
contents and is largely independent of other parts of the solu-
tion. It is controlled by the GUI elements that exist on each
Class side and only changes these elements and their values
through the synchronization procedure. The architecture and
workflow within this system are shown in Fig. 5. The figure
is a customized version of a UML Class Diagram where the
Classes have small descriptions instead of fields or operations
and instead of relations, the communication paths between
the Classes are displayed. The figure visualizes the modeling
procedure that is executed inside the 3D Model which is the
target component in this case. Here, the Virtual Character
serves as the bridge between the VR Device that tracks the
user’s physical input and the GUI of the Class which pro-

Design and evaluation of a collaborative UML modeling environment in virtual reality 1409

vides an interface to the Class content of the 3D Model to the
Virtual Character.

Each Class inside the modeling environment has its own
version of the Class Content System as shown in Fig. 5. Every
Class has one ClassContentSynchronizer that internally uses
the Event Synchronization Service to synchronize the Class’s
content structure across the network. Each Class also has one
SideMirror that mirrors the content structure across all sides
of the Class. Each ClassSide is a container for that side’s
two ElementGroups and the Class name. The Class name is
directly managed internally by the ClassSide and therefore
omitted in Fig. 5.

Each ElementGroup is either the group of fields that is
displayed below the name of a Class in UML or the group
of operations that is displayed below the fields group. Each
ClassSide always has one ElementGroup for its fields and
one for its operations. These ElementGroups each manage
a list of ClassSideElements (i.e., either fields or operations,
depending on the group) that exist in it.

A ClassSideElement is always one line in the UML Class
where either a field or operation is displayed. This line
always consists of an input field holding the text value of
the line and a “delete” button that can be used to remove the
respective element. Each ClassSideElement is responsible
for capturing changes to the element’s input field and presses
of the “delete” button. The ClassElementSynchronizer inter-
nally uses the Event Synchronization for synchronizing the
changes to that input field’s text across the network. Every
element (field or operation) on each ClassSide holds one
instance of ClassSideElement and one ClassElementSyn-
chronizer.

There are four types of changes that can happen to the
content on one side of the Class that need to be synchronized
across the other Class sides and across the network. These
change types are: (1) A field or operation’s text value chang-
ing, (2) a specific field or operation being deleted (3) a new
field or operation being created at a specific position, and
(4) the name of the Class changing. Depending on which of
these changes happened, the procedure of how the change is
synchronized, as shown in Fig. 5, starts slightly differently.

Synchronization inside the respective Classes in Fig. 5 is
always handled via the Event Synchronization Service (see
Fig. 2). The actual workflow of how these events are used
by the classes in Fig. 5 to synchronize changes across Class
sides and across the network depends on what kind of change
is happening.

Each change—independent of the type—always results
from the user interacting with the GUI on one side of the
Class. Changes to the input field of an element are detected
by the ClassSideElement and forwarded to the ClassEle-
mentSynchronizer which synchronizes the change of the
respective element with the other ClassElementSynchro-
nizers on the other clients through the Event Synchronization

Service. On every client, the ClassElementSynchronizer
receiving the event then notifies the ClassSideMirror of the
Class to apply the change to the respective element across all
Class sides.

On the other hand, when a user presses the delete button on
an element, the element is not locally deleted but a deletion
command for that element is forwarded by the ClassSideEle-
ment to the ClassContentSynchronizer. Similarly, when the
user adds a Class element on a Class side, a creation com-
mand for an element at the specified position is forwarded to
the ClassContentSynchronizer.

The ClassContentSynchronizer holds a model of which
elements are on the Class in which order as two separate
lists: one for fields and one for operations. When a deletion
or creation command is sent to the ClassContentSynchronizer
it edits this internal model and synchronizes the new version
to its counterparts on the other clients.

This way, one content synchronization event always con-
tains the complete current structure of elements on the Class,
meaning that old events do not need to be saved. If each event
would only contain one specific change to the structure (like
addition or deletion) all previous events would be needed to
arrive at the correct structure. This is important since clients
that join a room later need to be able to recreate every Class’s
structure easily so their Classes are synchronous with the
ones of the clients that were already in the room. With this
system, the new clients only need to be passed the most recent
content synchronization event by the Event Synchronization
Service to bring them up to date.

These change events are triggered by one client and sent to
all clients, including itself, so all of them start the procedure
of changing their model elements and the visual elements
at approximately the same time. When such an event is
received each of the ClassContentSynchronizers on the dif-
ferent clients calculates what changes need to be made to
transform their own (now deprecated) model into the newly
received one. It then executes those changes on the model and
forwards the appropriate commands to the ClassSideMirror,
S0 it can bring the visual representation on the ClassSides in
line with the now updated elements model.

It is important to understand that the ClassContentSyn-
chronizer only synchronizes the structure of the elements
without their textual content. The contents are synchronized
via the ClassElementSynchronizers as discussed before and
then forwarded to the ClassSideMirror. This separation is
done to reduce the amount of data that needs to be sent
across the network. Since the Class content events hold the
entire content, instead of just the changes to the content,
if the textual content of each element would be included
in it, then for each text change (i.e., each time any letter
changes in any of the Class’s elements) the entire content of
the Class would need to be transmitted. Therefore, structural
and textual changes are separated from each other because

@ Springer

1410

E. Yigitbas et al.

Fig.6 Examples of VR
keyboards: The Meta Quest 2’s
Laser pointer-style keyboard
(left) and the drum-style
keyboard VRKeys (right) [46]

the textual ones will happen a lot more often than structural
changes.

Once the information about a change has been synchro-
nized across the network, the ClassSideMirror is always
notified of them, so it can change the visual representation
on the ClassSides accordingly. The ClassSideMirror holds a
list of all six ClassSides and simply replicates the change
instructions across all of them. Each ClassSide receives
these instructions and, based on whether a field or oper-
ation should be changed, forwards them to the respective
ElementGroup. This group then creates or deletes an ele-
ment according to the instructions or—in the case of a textual
change in a specific element—forwards the instruction to
the correct ClassSideElement. The ClassSideElement then
finally updates the text inside the element’s input field but
without triggering a new synchronization call to the ClassE-
lementSynchronizer to prevent an infinite loop.

Changes in Class names are handled largely the same
way as changes to Class elements since all of them are
primarily input fields with text values that need to be syn-
chronized across all sides and across all clients. The only
real differences between them are that Class names—unlike
elements—cannot be deleted or created and exist exactly
once per side and thus do not need to be grouped into Element-
Groups. This means that a ClassSide can directly change the
value of its Class name input field when it receives a change
notification from the ClassSideMirror. It does not have to go
through a ClassElementGroup first. Otherwise, the synchro-
nization works analogously.

This structure ensures a strict separation of concerns
between the individual parts inside the Class Content Sys-
tem that are displayed in Fig. 5. Simultaneously, it makes
sure that changes happen on all clients as synchronously as
possible to avoid inconsistency within a single Class across
multiple clients when multiple users edit that Class at the
same time.

3.5 VR text input
In VR, text input is more difficult compared to traditional

computers due to the lack of a physical keyboard that pro-
vides haptic feedback on whether a key was hit or not. Since

@ Springer

T —— T Bam
T R | T
1)

"

|

Fig.7 Anexample UML Class Diagram with our custom 3D represen-
tation

the user cannot see and use a real keyboard in VR, virtual
keyboards are often used instead. As shown in Fig. 6, there
are two basic types of keyboards regularly found in VR appli-
cations: Laser pointer and drum-style keyboards.

Laser pointer-style keyboards are usually displayed as a
vertical plane in front of the user with each hand represent-
ing one laser pointer that can be used to press a key with a
dedicated button. Since the buttons have to be rather large to
be easily hittable, this input method requires a lot of space.
An alternative to laser pointer keyboards are drum-style key-
boards which we have chosen in our solution (see Fig. 8b).
These are shown in a horizontal, slightly tilted form in front
of the user like many real keyboards are as well. One virtual
mallet is attached to each of the user’s hands that can be used
to hit a key similar to how a person would hit a drum in the
real world. Because of the obvious drum analogy, it can be
assumed that this control scheme is also easy to understand
for most users and could be more natural to use than laser
pointers. Additionally, the profile of the keyboard is more
flatter than laser pointer-based ones, so a user can easily edit
text that is displayed upright in front of her/him while the
keyboard occludes less space in the front and to the sides of
the user. For these reasons, we use a drum-style keyboard as
the primary method for VR Text Input inside our solution.

Design and evaluation of a collaborative UML modeling environment in virtual reality 1411

However, VR keyboards are sometimes not the only
method to enter text. The Meta Quest’s YouTube app, for
example, allows the user to enter search terms by speech
recognition, making it substantially easier to use than virtual
keyboards, provided the recognition algorithm works cor-
rectly. While such speech recognition can work very well for
standard sentences, text in UML Class Diagrams is notably
different in that it uses a lot of special characters like colons
and braces and has its own grammar rules when it comes
to things like word separation and capitalization. In a UML
Class Diagram words inside a field name, for example, are
not separated by white spaces but by a capital letter for each
new word while the first word is usually started in lower-
case. Since these special cases are not easily reproducible
with modern speech recognition, we chose not to include
such an option in the solution and focus on the keyboard
method instead.

4 Implementation

In this section, the implementation of our collaborative mod-
eling environment in VR is described based on the conceptual
overview (see Fig. 1) that was presented in the previous
section. The source code of our collaborative modeling envi-
ronment VmodIR is published via GitHub* and open for
public access.

4.1 VR devices

The VR Device is a central part of the implementation and
conceptual solution, as shown in Fig. 1 because it is the gate-
way of every User into the Virtual Environment where all
interactions—with the model and with other Users—take
place. The VR Device also largely dictates the technological
possibilities of the implementation and therefore it is impor-
tant to decide about this component.

We wanted to focus on one headset because this typically
decreases development time compared to supporting multi-
ple platforms. Since one goal of the conceptual solution was
to provide interactions as natural as possible to users, we
needed a target device that supports the features like HAND
PRESENCE SUPPORT. The most common way for VR Devices
to provide this specific feature are two single-handed con-
trollers provided with the devices. Additionally, we needed
the headsets to function on their own with tracking in SIX
DEGREES OF FREEDOM and not require elaborate setup, like
outside tracking sensors, so users can quickly pick up and
use the system without being bound to a specific location.
Therefore, we needed a stand-alone headset with inside-out
tracking and two included single-handed controllers. The last

4 https://github.com/Blanner/VmodIR.

factor in our decision was the device cost. We wanted to make
it as realistic as possible that companies or educational insti-
tutions would buy multiple headsets so software engineers
could collaborate in VR, meaning that these headsets should
have a reasonable price.

For all these reasons, we chose the Meta Quest 2 as a
target implementation platform. The Quest 2 is a cable-free,
mobile VR HMD that includes all the above features while
enabling the user to move around on aroom scale with full S1X
DEGREES OF FREEDOM without the need to set up additional
sensors before using it. It also has a low price compared to
other VR headsets.

4.2 Virtual environment

The Virtual Environment is the basis of this solution since
every experience a User has inside the application takes place
inside the Virtual Environment.

For the implementation of the VR environment, we have
used the Unity 3D Game Engine developed by Unity Tech-
nologies [47] as it includes a fully-featured Graphics, Sound,
and Physics Engine and has easy-to-use APIs for many dif-
ferent aspects like controller input. Furthermore, Unity also
provides support for the Meta Quest 2 among other VR head-
sets through an Oculus VR SDK.

Concerning the design of the Virtual Environment, we had
two important requirements that were introduced before: (1)
realism, for maximized naturalness and immersion, and (2)
practicality for 3D modeling. To fulfill these requirements,
we relied on free online sources like the Unity Assets Store
where many rather high-fidelity assets can be downloaded
free of charge.

The grass floor is a repeating texture without actual 3D
grass to spare the limited resources of the Meta Quest’s
mobile processor. The sky is a skybox that is usually used
to simulate a sky in Unity that was downloaded from the
Unity Asset Store. This skybox depicts a slightly clouded
blue sky with a setting sun. To make the sun displayed in the
skybox actually cast shadows onto the world, we positioned
a directional light accordingly which is a virtual light source
included in Unity that is regularly used to simulate sunlight.
Figure 7 shows the resulting Virtual Environment with some
objects that cast shadows according to the sun’s position.

4.3 Network synchronization

To enable remote collaboration, a networking system is
needed that synchronizes aspects like model element- and
user avatar positions, user hand gestures, etc. For the imple-
mentation of the networking system, we have used the Photon
Unity Networking 2 (PUN2) plug-in for Unity. This is a third-
party system developed by Exit Games specifically for use
in Unity multiplayer projects and offers easy-to-use high-

@ Springer

https://github.com/Blanner/VmodlR

1412

E.Yigitbas et al.

level components. PUN2 realizes the network architecture
discussed in the previous section by providing its own Cloud
servers that automatically work with PUN2 without the need
for any custom server-side development.

4.4 Virtual character

The Oculus Software Development Kit (SDK), used to real-
ize the interaction between the VR Device and the Virtual
Environment, comes with a variety of assets that can be
used to quickly implement common functionalities inside
a VR application. Most aspects needed to realize the Virtual
Character are covered by those assets provided by Oculus.
Therefore, to save development time on those basics, we used
Oculus’ OVRAvatar and OVRCameraRig assets and adjusted
them slightly for our application. The OVRCameraRig deals
with tracking the position and rotation of the head and con-
trollers and rendering the world accordingly into the headset.
It does not include animated hands by default but there are
separate assets for that which can simply be placed under
the empty GameODbjects that track the controller positions to
enable users to see their hands. The gestures of the hands are
tracked locally by default through an animator so we only
had to add an animator synchronizer provided by PUN2 to
synchronize the hand’s animation states across the network
[14]. Since all Virtual Characters are represented equally in
this prototype, we chose to display every user’s name above
their character. An example of how a remote user’s Virtual
Character looks inside the VR app is shown in Fig. 8.

4.5 3D models

In the following, we will describe the implementation of the
3D UML Visualization and Model Editing.

4.5.1 3D UML visualization

As outlined in the conception section before, the main goal
of the 3D UML Visualization is to provide a 3D adaptation of
the standard 2D UML shapes that will seem natural to users
in the sense that a user, only familiar with the 2D shapes, can
easily recognize their 3D versions.

One method to find natural equivalents of 2D shapes in
3D is to use the 2D shapes as bodies of rotation to generate
a 3D shape. This means the 2D shape is turned around an
axis in 3D space and the trail it leaves while turning is the
3D shape. In the case of arrowheads, the connection’s line
can be used as the axis to turn around. However, this results
in some of those shapes looking rather similar to each other.
This is especially critical since, in 3D, they can be viewed
from different angles, and regardless of the viewing angle, a
user should always be able to easily identify each element.

@ Springer

For example, using the body of rotation method, an Inheri-
tance would look rather similar to a directed Association from
the side. Only when viewed from behind, it is perceivable that
the Association’s arrow is hollow while the Inheritance arrow
is solid. This is shown in Fig. 9.

To circumvents such issues, we took the rotational bodies
only as starting points to make sure the shapes are recog-
nizable enough for software engineers used to the 2D visual
language. We then adjusted these initial designs to make them
better distinguishable. In this case, we adjusted the repre-
sentation of the directed Association to use an arrow shape
consisting of two cuboids. However, this version has another
problem: When it is viewed from the side that the cuboid
points in, it can be hard to distinguish from undirected Asso-
ciations. This is shown in Fig. 10.

Therefore, we added another arrow shape to the tip of
the directed association that is positioned at a 90° angle to
the first arrow shape. This way, the directed association can
be easily identified independent of the viewing angle. The
resulting set of connections with their different arrow heads
that were used in our collaborative modeling environment
can be seen in Fig. 11.

4.5.2 Model editing

In the following, editing the 3D UML Visualization, i.e., the
model, and synchronizing its state across the network will be
described in more detail.

Creating and Deleting Elements: Every user’s Virtual Char-
acter has a Creation Menu following it around through which
the user can create new model elements by pressing GUI but-
tons with laser pointer style controls. Figure 12 shows how
this Creation Menu was realized in the prototype. Besides
the Creation Menu, this menu implementation also includes
some additional features that can be accessed via dedicated
buttons. This was done in a way that the user only has one
menu through which all functionality that requires a menu
(e.g., leaving the room) is accessible.

To reduce the overall space the menu takes up, we decided
to only display a small number of icons through which addi-
tional panels can be opened and closed. For example, the “+”
button in the center opens and closes the “Add Element”’-
panel, i.e., the Creation Menu, through which new UML
model elements can be created. Figure 12 shows the menu
with an expanded “Add Element”’-panel. Other icons open
panels for saving and loading of models, a task description
for the usability study that will be discussed in the next sec-
tion, and a list of users in the current session, while the final
button lets the user exit the current modeling session.

The Creation Menu includes dedicated buttons for all
supported model elements which are labeled textually and
with the respective 2D UML element so users can easily
remember which button creates which model element. These

Design and evaluation of a collaborative UML modeling environment in virtual reality 1413

//7

(@) User A (foreground) and B (background)
creating fields and operations

(c) User B is connecting the two Classes
with an Association by grabbing and moving

(b) User A (foreground) and B (background)
entering names for fields and operations

Fig.8 Screenshots of the collaborative VR modeling environment

Fig.9 Comparison of
inheritance and directed
association when using 2D
bodies of rotation to create the
3D designs

Fig. 10 Comparison between
the undirected association and
the directed association with the
first adjusted and final 3D
representation versions

Fig. 11 Pairwise 2D (top) and
3D (bottom) designs of the
supported arrow shapes from
UML Class Diagrams

Fig. 12 The primary menu
while modeling, with an
expanded Add Element panel

Inheritance Directed Association

2D >
30 ~

(Side View)
3D
(Back Angle View)
Undirected Association Directed Association Directed Association
(First Adjusted Version) (Final Version)
2D

v ——— .
(ideview) I— >

3D X
(Back Angle View)

>

—*—>

<> -
oy

Add Element

Undirected ~ Directed ovance aggregation Composition

Association = Association

FAPB

@ Springer

1414

E.Yigitbas et al.

GUISs, like all GUIs in the application, were implemented
using the Unity Engine’s built-in GUI system which pro-
vides basic elements like panels, input fields, and buttons
that can be arranged to form menus in a visual editor and can
be equipped with functionality through custom scripts. The
Oculus SDK provides support for this GUI system through
pre-made assets that implement laser pointer style controls
for the GUI without a need to adjust the individual GUI ele-
ments.

Whenever one of the buttons for creating a model element
is pressed, a prefab of that element is created through a cre-
ation method provided by PUN2. This creation method is
ensured to be called on the master client because this is the
client responsible for creating and deleting room objects, i.e.,
objects that should persist even when the client that spawned
them leave the room.

For this, a Remote Procedure Call (RPC) is sent from the
client that pressed the respective “create” button to the mas-
ter client which then handles the instantiation of the model
element’s prefab through the creation method provided by
PUN?2. Since the given prefabs include Photon View Compo-
nents, PUN2 then handles all synchronization of these objects
automatically, including the creation of these objects for later
joining clients.

Deletion across the network works rather similarly. A user
can toggle a red deletion laser pointer by which the user
enters or exits the deletion mode. The object, the laser pointer
points at, gets marked red and the user can press the “select”
button—usually used to press a GUI button—to delete it.

Internally, each model element holds a script that marks it
as a Deletable Element. The laser pointer then checks if it is
pointing at an element with this script when the user presses
the “select” button. If such an element is hit, the object is
deleted over the network through an analogous procedure to
an object’s creation. Therefore, once the delete-method was
forwarded from the master client to PUN2, Photon again han-
dles all networking tasks internally, like it did when creating
a new model element.

This system offers a simple setup for efficiently creat-
ing and deleting the networked model elements through the
PUN2 networking infrastructure and should be easy to use
for the application’s users, aligning with this paper’s goal
of providing remote collaboration support in a 3D modeling
environment in a natural and intuitive way.

Moving Model Elements: As described earlier, the user can
move model elements by grabbing objects with the Hands
of the Virtual Character. With the Oculus SDK, there is a
grabbing system included which provides exactly the func-
tionality we need without having to write much additional
code. The system works by having an OVRGrabber script
attached to each Hand and an OVRGrabbable script added
to all objects that it should be able to grab, hold, and move,

@ Springer

Fig.13 A user grabbing and moving one end of a connection

like the Class cuboids. This way, the Classes can be grabbed
anywhere by the Cuboid that visualizes it while the Connec-
tions have dedicated GrabVolumes at each end that the user
can grab and move. These GrabVolumes were implemented
as spheres in this prototype.

To make it easy to grab these spheres, they are repre-
sented rather large in the VR application. Large GrabVolumes
bring the problem that they can occlude important parts of
the model, crucially the arrowheads that are necessary to
differentiate the Connection types. Therefore, we made the
GrabVolumes partly transparent and let them only display
when a user moves one of their hands toward the start or
end of such a Connection. This makes it easy for the user to
see if the Connection can be grabbed at the point where the
user’s hand currently is, while simultaneously not occluding
important parts of the model when the user does not want
to move the Connection. Figure 13 shows a user grabbing a
GrabVolume in the VR application.

Editing Class Content: In the previous section, we have
already discussed how the editing and synchronization of
content inside a modeled Class were designed through a setup
of classes communicating in a predefined way (see Fig. 5).
These classes were implemented in the prototype through
scripts that are placed on the Class GameObject and its child
objects, e.g., the Class Sides.

The synchronization inside the Class Content System’s
classes is always handled via the Networked Events with a
dedicated event type for each script class. In addition to the
event type, the event also always has to contain the ID of
the Class or ClassSideElement that the event is about, so
changes are only applied to the correct element inside the
correct Class.

In the case of the Classes, Photon ViewIDs are used for
this, because they already are ensured to be unique inside a
room by PUN2. Elements have specialized IDs. Each element
ID is not only unique within a Class but also unique across
all Classes in a room. This makes it easier to ensure that
the IDs of elements are unique because only one centralized
networked variable (called room property in PUN2) can be

Design and evaluation of a collaborative UML modeling environment in virtual reality 1415

= Student Pty

- immatriculationNr : int [Del

Fig. 14 Inserting a field or operation through the Button-Line-Control

used to represent the next higher ID that is still free. When
a new element is added, it tries to get a new ID by changing
this room property and if no two elements try this at the same
time, the element receives the previous value of the room
property as its new ID. In this procedure, two elements may
clash because they try to set the ID property at the same time
to the same higher value. This is serialized by one element
being given the new ID and the other element retrying the
process with the next higher ID.

This provides an efficient implementation of the Class
Content System through C# scripts in Unity and PUN2’s Net-
work Events. The actual GUI elements on the Class Sides,
e.g., the input fields for Class names, are realized just like
the GUISs that are used for the Virfual Character’s Creation
Menu. The user can delete elements from a Class through a
dedicated “Del” button for each element as shown in Fig. 14
on the right of the Class.

Adding of elements was realized by displaying a green
insertion line when the user aims above or below an element
with their hand. A larger green “+” button is also displayed
on the line’s right end. This is shown in Fig. 14. The user can
press either the line or the button to insert a new element, and
the elements disappear when the user is not aiming at one of
them.

This combination of an “insert” line and button strikes a
balance between the granularity of being able to insert a new
element anywhere on a Class and the difficulty to hit a thin
line without the larger button by pointing at it.

4.6 VR text input

The VR Text Input component from Fig. 1 was realized as a
drum-style keyboard in this solution. This choice was already
motivated in the previous section. In the following, we will
describe how this keyboard was implemented in the VR
application.

Since there are several prebuilt solutions for these types
of VR keyboards available on the Unity Asset Store that

Fig. 15 A user operating the drum-style keyboard in VR

fulfill their task adequately, we chose to implement the key-
board based on such an existing solution. Thus, we chose the
VRKeys package from the Unity Asset Store [46] since it is
free, provides a customizable keyboard layout, and offered
user feedback on whether a key was hit or not: When a user
hits a key with a mallet, the key moves down (like a key on a
normal keyboard would when pressed), it makes a clicking
sound, the controller that was used to press the key slightly
vibrates and the key turns yellow for a short period. This
means that there is audio, visual, and haptic feedback pro-
vided with a keystroke out of the box which can be assumed
to help the user notice which key was pressed and alerts the
user if an accidental keystroke happened. Figure 15 shows
this drum-style keyboard as implemented in the prototype.

One important aspect that had to be adjusted in the key-
board to make it work in our VR application was setting up
the connection between the input fields, like Class names,
and the keystrokes.

By default, the keyboard directly edits an input field
attached to the top of it. Since we needed to make it work
with arbitrary input fields on Classes and in the GUI we had
to find a way to make it appear whenever the user selects an
input field and make the keyboard edit that input field. The
currently selected GameObject is always tracked by Unity
in an EventSystem object which is primarily needed to con-
trol GUISs since interactions with these are handled via local
events in Unity. Therefore, by hooking into the EventSystem
and checking if a newly selected GameOQObject is an input field
whenever the selection changes, the keyboard can be imme-
diately opened and closed whenever it is requested through a
click on an input field. This enables a reference to that input
field to be passed to the keyboard whenever it is enabled,
without the need to set up every input field with a reference
to the keyboard. After the keyboard is displayed and has
been given a reference to the currently selected input field, it
changes its content according to the keystrokes.

@ Springer

1416

E.Yigitbas et al.

The management part of interfacing with the EventSystem,
passing the correct reference to the keyboard and activating
or deactivating the keyboard accordingly is handled by a ded-
icated KeyboardManager class while the input handling and
changing of the input field once the reference is setup is han-
dled in the Keyboard class to ensure proper separation of
concerns.

With this system, any text input where GUIs are involved
can be handled through the GUI’s EventSystem and the
keyboard classes without any further setup required for
dynamically created GUISs, like the ones found on Classes.

5 Evaluation

To evaluate the efficiency, effectiveness, and user satisfaction
of VmodIR and to compare it with conventional collaborative
modeling approaches, we have conducted a user study which
will be presented in the following.

5.1 Setup and participants

The user study was organized in such a way that two peo-
ple in different rooms had to collaboratively create a UML
Class Diagram. We have chosen a within-subjects design [3]
for our user study where the participants were asked to use
both modeling approaches, a conventional modeling tool, and
the developed VR modeling tool. Two different small UML
Class Diagram modeling tasks (consisting of five classes and
based on a textual description) were provided to the partici-
pants, while the sequence and type of task which was carried
out with the help of a modeling tool were evenly distributed
to avoid potential bias in the collected data. As a reference
application for comparing with our own VR environment,
we have decided to use an existing commercially available
tool for collaborative UML modeling. The tool we used is the
web application Lucidchart [26]. This was chosen because
it offers a mode of collaboration many users are already
familiar with from services like Google Docs, it offers a free
version that could be used for this study, and supported UML
Class Diagrams. The evaluated applications focus on remote
collaboration, therefore, we simulated a remote setting by
placing each participant in a different room during their col-
laborative tasks where they could only communicate through
computing devices (conventional and VR device).

For the VR application, each participant was positioned
in a free space of approximately the same size and equipped
with an Meta Quest 2 VR Headset including its two VR
Controllers. The participants were able to communicate over
the application’s voice chat feature using the Meta Quest’s
built-in microphone and speakers. The respective task was
displayed inside the VR app on a panel that could be opened
and closed through an icon on the user’s menu. The panel was

@ Springer

positioned slightly to the left of the user so they could leave
the panel open and edit the model in front of them at the same
time. While solving the web task, each participant was sitting
at a desk in the same room that the VR free space was in,
equipped with a laptop and a wired mouse. The participants
could use the laptop’s keyboard, its trackpad, and the mouse
as they saw fit. Since the web application does not include
voice chat, the participants communicated via the voice chat
application Skype that was running in the background on their
laptops. The app used the built-in speakers and microphones
of the laptops. The tasks were supplied to users on a sheet
of paper so, like in the VR app, it would not occlude their
modeling environment unnecessarily.

Figure 16 shows the basic setup of our user study where
two participants are collaborating in VR (top) and through
the web app (bottom).

Since this study involved participants having to create two
small Class Diagrams, these participants had to bring a basic
knowledge about what a Class Diagram is and which pur-
pose it serves for software modeling. Therefore, we had to
rely on participants who either had lectures or school classes
on this topic, for example, in computer science lectures or
subjects and/or who knew Class Diagrams from a different
source, like working as a software developer who uses them.
Therefore, we primarily tried to acquire participants with
educational backgrounds, like university students and recent
graduates. Our main source was a lecture on Model-Based
Software Engineering designed for undergraduate students
of computer science in their third year of studies. In this lec-
ture, we presented the study and asked students to participate
in it. We also reached out to students we were still in contact
with who took part in this lecture during the prior year to
widen our pool of possible participants while still ensuring
comparable credentials among them. In total, 24 participants
took part in the user study, meaning that there were 12 groups
of two people each.

5.2 Procedure

The user study was conducted during one week in February
2021. The experimental setting was kept as equal as possi-
ble for all pairs of participants. First, the participants were
greeted and introduced to the user study. Then, the basic pro-
cedure of how they will take part in the study and what they
will do during their participation were explained. Afterward,
depending on whether the VR or web app was used first,
the collaboration environment was set up (e.g., splitting the
participants, starting Skype, etc.), and they received a short
introduction to the respective program. In the case of the
web application, this was done through the study supervisor
explaining the main functionality from a pre-written script to
ensure all participants were given the same information. In
the VR app, we have additionally implemented a tutorial that

Design and evaluation of a collaborative UML modeling environment in virtual reality 1417

Fig. 16 Users participating in
the study. Two collaborators
using the VR app (top) and the
web app (bottom)

served as an on-boarding tutorial at the beginning of the user
study. After the tutorials, the participants were provided with
the respective task and instructed to solve the task collabo-
ratively in the sense that they should only create one Class
Diagram together in each application. They were then asked
to indicate to the study executor once they think they are
done with their task. When the participants finished the first
task, the procedure was repeated for the second task. After
both tasks were finished, the collaborative applications were
closed so participants would not be able to talk to each other
anymore. They were then given the questionnaire hosted via
Google Forms [17] and were asked to fill it out using the lap-
tops that were used for the web application as well. During
this process, the users stayed in the different rooms they were
in while working on the tasks to ensure that they would not
influence each other’s answers.

5.3 Usability measurements

To extract meaningful results from the study, we had to
choose certain measurements that we would take during the
execution. Figure 17 shows an overview of the data that was
collected during the user study and which measurements
were derived from that.

Efficiency was measured by recording the participants’
execution of the task and tracking the time from the point
where they started reading the task to the time when they
told the study executor that they finished it. From these same
recordings, the effectiveness was measured by counting the
number of operating errors that the participants made dur-
ing the execution of the task. From this, an error rate was
calculated by dividing the number of errors by the time in
minutes that was measured as the efficiency. This error rate
was our final score for the effectiveness in errors per minute.

Study Execution Recorded Data Extracted Measurements

Effectiveness
Participants Screen
executing Recordings » Error Rates
VR Task (VR and Web)

Efficiency
Participants Task
executing Completion
Web Task Times

User Satisfaction
SUS Scores:

»| - Per Participant

- Per Question
- Overall

Answers to SUS
Questionnaire

Participants
answering
Questionnaire

Answers to
Custom
Questionnaire

Demographic
Statistics

Legend

<:> Process
I:l Artifact

— yields information about

D Created / Executed for Web Comparative

Statistics

Created / Executed for VR
/ (VR vs. Web)

Fig.17 An overview of what was measured within the user study

The recordings used for tracking efficiency and effective-
ness were screen-captures including the voice chat audio.
In each group, only one participant was recorded to reduce
the amount of video data that had to be manually evaluated.
Another reason for that was the network infrastructure that
did not allow us to capture and record two video feeds from
the VR headsets in parallel. The user satisfaction was eval-
uated through a questionnaire that participants were asked
to fill out after they finished both tasks. We chose to use the
System Usability Scale (SUS) questionnaire [9] since it is
a well-proven and reliable questionnaire that provides com-

@ Springer

1418

E.Yigitbas et al.

Time [min:sec]
19:29

13:50 13:02

11:43 11:15

083 05830 0313
0620 06:33 II I =

mVR ®mWeb

12:35
oo Bi012 10:52
I I 07 04 08 30 I07 :40

Groupl Group2 Group3 Group4 Group5 Group6 Group7 Group8 Group9 Group10 Group 11 Group 12

Time [min:sec]

18:23 18:40 19:29
18:27

15:02

Fig. 18 The times each group took to execute the task on the web and the VR app, respectively

parability with SUS evaluations of other applications and
that can be quickly filled out due to its low number of ques-
tions [7]. While efficiency and effectiveness were measured
for both applications, the SUS questionnaire was only asked
in the context of the VR application. This is because the
SUS questionnaire’s main purpose in this work is to pro-
vide a proof of concept that the VR solution has rather good
usability. Furthermore, the participants were asked to answer
a custom-developed questionnaire that included mainly 5-
point Likert scale questions (like the SUS questions) and
some free text questions asking for more specific impres-
sions with regard to collaboration and interaction.

5.4 Results

In the following, we present the main results of the user study.

5.4.1 Demographic statistics

Twenty-four people in 12 collaborating groups participated
in the study. All participants were between 22 and 30 with
a median of 25 and a mean of 25.5. Twenty-one of the 24
participants were male and the others female. Most of the
participants were software engineering practitioners or had
a background in computer science. As a consequence, many
participants reported advanced experience with UML and
UML modeling tools. The average rating scores for prior
experience with UML and UML modeling tools were 3.25
and approximately 3, respectively. With regard to prior expe-
rience with VR, our results show that half of the participants
have never used a VR device before this study while 8 used
them at least reasonably often.

5.4.2 Efficiency

The times participants needed to complete their tasks are
shown in Fig. 18.

All but two groups (Group 7 and 11) needed more time in
VR than in the web application to complete their task. From

@ Springer

the recordings, it could be observed that almost all groups
split up the work on the Class Diagram by each modeling
one part of the diagram and putting both parts together in the
end. During this process, they occasionally discussed how to
model certain aspects if they were unsure and checked the
part of the model their collaborator created in the end. The
two groups that took longer in the web application than in
VR had a slightly different approach that could explain this
anomaly: In VR, they split up their task as outlined above. In
the web application, however, they mainly followed a pair-
programming style approach: For each part of the task they
discussed how to model it, and then only one of them modeled
the aspect accordingly. The first approach obviously saves
time in comparison with the latter one which could explain
why they were able to complete the task faster in VR than in
the web application when everyone else needed longer in VR.
This makes the times for these two groups not comparable
since they did not use a similar organizational method in both
conditions. Therefore, we excluded them from time-related
analyses like the box plots shown on the right of Fig. 18.
Besides this anomaly, it can be said that the spread with
respect to time was way smaller for the web application than
for VR, i.e., they vary less as shown on the right of Fig. 18.
In VR, times range from almost 20 minutes to as low as 9:30
min, while in the web condition, the times vary from approx-
imately 5:30 to 10 minutes. The difference of each group
between web and VR had a mean of 4:46min and a median
of 5:26. This time-data may be normally distributed around
its mean but does not have to be. To perform a significance
test, we used the Wilcoxon Signed-Rank test [1] since it does
not assume a normal distribution, and based on our test we
cannot confirm that both samples are normally distributed.
This test reports a Z = —2, 589 with p < .05, meaning that
VR had statistically significantly longer task times than web.

5.4.3 Effectiveness

In order to consistently track errors across all recordings,
we had to define what “error” means in the context of this

Design and evaluation of a collaborative UML modeling environment in virtual reality

1419

Errors per Minute
5,00

4,00
3,00

2,00
092 1,04 0,081,08 123 1,14

1,57
0,63 0,73 0,8
0,55 0,59 0 29
0,12 .

Groupl Group2 Group3 Group4 Group5 Group6 Group7 Group8

0,00

m VR mWeb

Fig. 19 The error rates of the recorded participant in each group

usability evaluation. Our definition of a Usability Problem is
based on [29] where the authors define a Usability Problem
as “a set of negative phenomena, such as user’s inability to
reach his/her goal, inefficient interaction and/or user’s dissat-
isfaction, caused by a combination of user interface design
factors and factors of usage context” [29]. Based on this def-
inition, we extracted 3 types of errors that we analyzed in the
recordings:

1. Missed Interaction Point: The user tried to interact with
an element of the application but did not hit the said ele-
ment (for example a button) or used the wrong control for
interaction. Thus, the user needs to repeat the interaction.

2. Accidental Interaction: The user did not intend to interact
at all or not with this specific element but accidentally
interacted with it anyway. Thus, the user needs to revert
the interaction.

3. False Interaction: The user tried to do an interaction that is
not possible at all or not possible at that specific element.
Thus, the user experiences a loss of time and needs to find
out the correct interaction to achieve the desired effect.

During the evaluation of the recordings, we tracked each
error by its type and a time stamp. Finally, the effectiveness
was measured in errors per minute and is shown in Fig. 19.
Most errors belonged to the Missed Interaction Point or Acci-
dental Interaction types with only a few False Interactions.

In VR, we observed a mean error rate of approximately 1.5
(error per minute) with a median of 1.25 (error per minute),
while these values lay at 0.66 and 0.61 (error per minute),
respectively, in the web application. The Wilcoxon Signed-
Rank test resulted in a test statistic of Z = —2.599 with a
significance < .05 which shows that VR had a statistically
significantly higher error rate than the web-based application.

5.4.4 User satisfaction

The basic user satisfaction was measured in the VR appli-
cation using the 10 items SUS questionnaire for each

Errors per Minute
1,80
1,60
1,40
1,20
1,00
0,80
0,60
0,40
0,20
0,00

4,51

1,30
0,9
0,59

0,440,42 I 060 I
n ln

Group 9 Group 10 Group 11 Group 12

B VR W web

participant. In total, our collaborative VR modeling envi-
ronment reached an average SUS score of 78 out of 100
which indicates according to [43] good usability. As men-
tioned earlier, we did not ask the participants to fill out the
SUS questionnaire for the web application as our focus was
more on the acceptance of our own VR solution than on the
acceptance of a mature and commercial modeling tool like
Lucidchart.

5.4.5 Additional questionnaire results

Besides the presented usability evaluation metrics, we had
further additional questions covering aspects like interactiv-
ity and co-presence, usage fun and motivation, intention to
use the tools in the future, general application preference as
well as open-ended questions to receive general feedback and
remarks. In the following, the main results of these additional
questions will be described.

Interactivity and Co-Presence To assess the perceived natu-
ralness of both applications, the web and our VR solution,
the similarity of interactions inside the applications to face-
to-face interactions and the feeling of co-presence were
analyzed. The results are depicted in Fig. 20.

Concerning the similarity of interactions to face-to-face
interactions (see Fig. 20a), the average score of the web
application is 2.33 and noticeably lower than the VR’s 3.58.
Additionally, in VR 14 out of 24 people selected the high-
est (5/5 on the Likert scale) answers whereas, in the web,
nobody chose the highest and only two people chose the sec-
ond highest answer (4/5 on the Likert scale). A Wilcoxon
Signed-Rank test revealed that this observed difference is
indeed statistically significant with Z = —3.208 and a sig-
nificance of < 0.05. Overall, this means that users found
interactions with their teammates to be significantly more
similar to face-to-face interactions in the VR modeling envi-
ronment compared to the web application.

A further important aspect for natural interaction and
collaboration is co-presence which denotes the feeling of
being in the same place despite the remote setting. Figure

@ Springer

1420

E.Yigitbas et al.

5 - 5
=

4 4
3,5 - 3,5

3 3

g 5
z :
£ <
2,5 2,5
2 —— 2 o
1,5 15
1 1
EVR H Web B VR B Web

(a) Interactivity (b) Co-Presence

Fig. 20 Results of additional questions concerning interactivity and
co-presence

20 (b) shows how the participants assessed their feeling of
co-presence in both applications. It shows that in the web-
based application, this feeling is very different from user to
user, with larger bulks at both ends of the scale. The median,
however, with a value of 2.6 points more toward the lower
end of the scale. In the VR app, this is very different. While
two people rated the co-presence rather low (2 on the 1-5
scale), every other participant at least somewhat agreed with
the sentiment that there was a feeling of co-presence with 9
participants selecting 4/5 and 13 choosing 5/5. The Wilcoxon
signed-rank test confirmed that this difference is statistically
significant with a Z = —3.587 and a significance of < 0.05.
This implies that the VR application can more successfully
make users feel like they are collaborating in the same room
compared to the web app.

Usage fun and motivation Previous research has shown that
users find VR solutions to be more fun and motivating to
use compared to traditional solutions based on desktop com-
puters [36]. To assess if that translates to the collaborative
modeling of UML Class Diagrams, we included two ques-
tions where users had to indicate if they found the VR or
the web application more fun and more motivating to use,
respectively.

The answers to these questions are visualized in Figs.
21 and 22. These figures paint a rather similar picture: The
majority of people strongly agreed that the VR application
is more fun and more motivating to use and no participant
strongly disagreed. However, this agreement in the “fun”-
question was expressed by more people (19 vs. 13) than in
the “motivating”-question with more people choosing the
less decided answers of 2-4 when it comes to motivation.

Regardless of this difference, the overall tendency shows
that fun and motivation are more pronounced in VR than
in the web application. This can be due to VR being more
unfamiliar to most users than a web application and therefore

@ Springer

being more interesting. Yet this data still shows that using the
VR app seemed to be a positive experience for most users.

Both the fun and motivation expressed by participants

negatively correlated with the general UML experience of
participants. According to Spearman’s rank correlation, both
had a significance level of < .05, while the fun-related
answers showed a correlation coefficient of -.433 and the
motivation ones -.431. This means that the participants more
experienced with UML found the difference in fun and
motivation between the VR and the web applications less
pronounced.
Intention to use the tools in the future As a resumé, the ques-
tionnaire also included two questions regarding the intention
of the user to use applications like the web and VR ones in
the future. Figure 23 visualizes the results of these questions
side by side.

These charts show that 20 out of 24 people would like to
use the web application in the future while only 15 answered
similarly for the VR app (answers 4 & 5). Accordingly, seven
people stated they would not want to use an app like the
VR one, while only 1 person answered like that for the web
application (answers 1 &2).

This difference can be observed again when looking at the
mean values of 4.1 for web and 3.5 for VR. According to a
Wilcoxon signed-rank test, this difference was not statisti-
cally significant, however, producing a Z = —1.498 and a
significance level > .05.

An analysis with Spearman’s rank-correlation showed that

the intention to use web applications in the future correlates
with both the general UML experience and the experience
with UML tools of the participants. Both showed a sig-
nificance of < .05 with general UML experience having a
correlation coefficient of .428 and UML tool experience a
419.
Application preference In one of the last questions, partic-
ipants had to choose which application they would prefer
to use for collaborative UML modeling: They could choose
either one or state that they would want to use both depending
on the situation. A follow-up question to this one subse-
quently asked in which situations they would want to use
which application if they selected “Both.” Figure 24 shows
the preferences as indicated by participants.

13% (3 out of 24) wanted to use the VR app over the web
application and 37% (9 out of 24) vice versa. Half of the
participants, however, indicated that they would want to use
both applications, each for specific situations.

When asked in which situations they would want to use
which application, participants gave rather diverse answers.
Five users stated that they would want to use the web appli-
cation for complex or longer tasks and the VR one for shorter
ones. Two mentioned that they would prefer the web applica-
tion for time-critical work. Brainstorming and planning was
mentioned by three people to be more suited for the VR appli-

Design and evaluation of a collaborative UML modeling environment in virtual reality 1421

Fig.21 Participants’ fun using
the applications

| found the VR app to be more fun to use than the

web app 45
20 " .
9
§ 15 35
> g
(9]
& 10 z 3 "
9] <
é 5 2,5
<
0 — — - 2 *
1 2 3 4 5 1,5
Answers: Strongly disagree (1) to Strongly agree (5) .
Fig.22 Participants’ motivation
using the applications | found the VR app to be more motivating to use than
the web app
14
312
c
g 10 _
g 8 g
T 6 <
[
2 4 2,5
Z
£ n B B z
0
1 2 3 4 5 1,5
Answers: Strongly disagree (1) to Strongly agree (5) .
Fig.23 Participant’s intention
to use the tools for collaborative | could imagine to use similar apps for collaborative UML 5
modeling modelling in the future 45
14
4
z12
g 10 3,5
= 3
g 8 : 3
<6 .
g 4 25
2,
2
! Hm ull
1 2 3 4 5 15
Answers: Strongly disagree (1) to Strongly agree (5) 1 -

Which type of application would you prefer to use for
collaborative UML modelling?

37%
50%

13%

= Web application = Virtual Reality (VR) application

= Both (Depending on the Situation)

Fig.24 Participant’s preference after using the applications

mVR ®mWeb

B VR H Web

cation and one person stated that she would like to use “the
web application when you are working on one device with
your partner” and the VR app when in “different locations.”
General remarks and feedback Apart from the above-
mentioned questions, we asked the participants open-ended
questions to provide us general feedback and remarks (what
have you liked/disliked most) on the developed collaborative
VR modeling environment. The most notable result is that 14
out of 24 people mentioned that moving the model elements
through the grabbing feature felt natural. Furthermore, most
comments were praising the “collaboration” in the VR mod-
eling environment. Some comments explicitly mentioned a
like for the collaboration (3 out of 24), some indicated a pos-
itive impression for the support to talk to the teammate (4

@ Springer

1422

E.Yigitbas et al.

out of 24), being able to see the teammate (4 out of 24) or
the feeling of the teammate’s presence (4 out of 24). Some
participants mentioned multiple of these aspects. In total, 11
out of 24 noted that at least one of these collaboration-related
aspects felt natural or intuitive. Concerning the negative feed-
back comments, typing on the keyboard in VR was the most
mentioned aspect (9 out of 24), while some of the participants
stated that this would only need some time to get used to it.
Furthermore, the missing of an auto-alignment or snapping
feature, like known from most diagramming and modeling
tools (e.g., Microsoft Visio [30]), was complained about by
five users. However, five out of 24 people said that VR was
entertaining or fun to use and two added that it is specifically
useful for home office scenarios since it makes people feel
more together and would “definitely improve motivation and
team spirit.”

5.4.6 Discussion

Based on previous research and the participants’ familiarity
with traditional computer programs, we expected one down-
side of VR to be that users’ task executions are slower and
more error-prone in VR. The data from our study show that
this was indeed the case. These measures could have been
influenced by the universal familiarity of participants with PC
applications in general and UML tools specifically. There-
fore, it is possible that speed and error rates in VR improve
as users get more experience with a specific VR UML tool.
However, the current state-of-art text entry can be seen as
a major bottleneck for the efficiency of text-intensive VR
applications. The results of the SUS evaluation additionally
showed that our VR implementation is already quite usable
even though it still lacks many features that users expect
from such an application like automatic aligning of model
elements and copy & paste functionalities. The various data
points gathered about the naturalness of different aspects
of the application gave a clearer insight on what concrete
advantages such a VR application can have compared to tra-
ditional tools: On average, users found the interactions and
especially the collaboration related aspects of the VR appli-
cation significantly more natural than in the web application.
This is especially important with respect to this work’s focus
on remote collaboration settings as the study showed that the
feelings of being together and collaborating face to face with
a co-worker were much higher in VR compared to the tra-
ditional PC alternative. Another aspect that we expected VR
to be beneficial for is the motivation and fun users are hav-
ing while using it. Our study shows that it is indeed true that
users were a lot more motivated and had a lot more fun using
the VR application compared to the web app. It is important
to note that this could be influenced by the fact that VR is a
relatively new and therefore possibly more interesting tech-
nology, so these values might align more over time when a

@ Springer

user regularly uses a VR application for modeling. The fact
that using VR can be more exhausting for people was one
downside of VR we expected to observe in this study as well.
While we did see that some participants experienced signifi-
cant discomfort (due to heavy headsets, pressure against the
face, or cybersickness), most people did not have any issues
with that.

Considering the suggestions made by participants about
when they would like to use which application, it is evident,
however, that a VR UML tool would not simply replace the
desktop ones. It would rather be an amendment, so users
have the option to use the tool that is most suited for a
given situation. In remote collaboration settings, where two
or more people need to brainstorm or discuss how something
should be modeled, the VR application could be used. When
collaborating in the same room or when creating a model
alone, a PC-based application could be more appropriate.
This implies that such apps need seamless interoperability
between PCs and VR when they ought to be used in actual
modeling work outside of usability studies. To summarize,
it can be said that VR can offer a more natural collabora-
tive modeling experience compared to PC-based tools but
that both techniques have certain advantages and drawbacks.
These make the use of both tool-types, depending on the
concrete situation, most sensible instead of using only one
of them exclusively.

5.4.7 Threats to validity

With regard to collaboration, this study only evaluated two-
person teams. Therefore, it is unclear if the findings can be
generalized to larger numbers of simultaneous collaborators.
The number of participants and thereby collaboration teams
was also rather limited. With more participants, a between-
subjects design [3] could have been chosen which has the
possibility to provide data and thus findings that are more
generalizable across many different users. Due to the par-
ticipants’ demographics (e.g., age, profession, background,
etc.), the findings of this study should be taken carefully
and further user studies with other user groups are needed
to get insights about the general usability. Additionally, this
study compared a fully featured commercially available web
application with a VR modeling prototype, missing many
of the features that the web application supported, like auto-
matic aligning of model elements. This study therefore could
not achieve a strict like-for-like comparison between the two
types of applications.

6 Conclusion and outlook

While the Unified Modeling Language (UML) is one of
the major conceptual modeling languages for software engi-

Design and evaluation of a collaborative UML modeling environment in virtual reality 1423

neers, more and more concerns arise from the modeling
quality of UML and its tool-support. Among them, the lim-
itation of the two-dimensional presentation of its notations
and lack of natural collaborative modeling tools are reported
to be significant. In this paper, we have explored the poten-
tial of using virtual reality (VR) technology for collaborative
UML software design by comparing it with classical collab-
orative software design using conventional devices (desktop
PC/laptop). For this purpose, we have presented a VR model-
ing environment that offers a natural collaborative modeling
experience for UML Class Diagrams. Based on a user study
with 24 participants, we have compared collaborative VR
modeling with conventional modeling with regard to effi-
ciency, effectiveness, and user satisfaction. The main results
show that the use of VR has some disadvantages concerning
efficiency and effectiveness, but the user’s fun, the feeling of
being in the same room with a remote collaborator, and the
naturalness of collaboration were increased.

In ongoing work, we are developing a gamification-based
UML learning environment in VR [59] that is based on
the approach presented here. The VR environment pro-
vides minigames and multi-viewpoint modeling features
to learn creating class diagrams. Furthermore, this envi-
ronment supports a multi-modal interaction and a more
realistic representation of the virtual characters. Besides
these improvements, we further plan to implement features
like automatic alignment of model elements, and tracking
of which collaborator created which parts of the model.
Apart from that, scalability and performance are important
technical aspects that should be investigated in future work,
especially if larger groups of people use such a VR modeling
tool for collaboration purposes. In addition, further usabil-
ity evaluation studies with larger groups of heterogeneous
participants and more complex modeling tasks should be
conducted to analyze in more detail the benefit of collabora-
tive modeling in VR. Finally, we believe that a cross-device
mixed reality collaborative modeling approach is a promis-
ing way to support modeling across different AR/VR capable
and conventional devices.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Arif, A.S.: University of California. A brief note on selecting &
reporting the right statistical test. https://www.asarif.com/notes/
HypothesisTesting.html (2021)

2. Axellience. Genmymodel. https://www.genmymodel.com/ (2020)

3. Barnum, C.M.: Usability Testing Essentials: Ready, Set...Test!
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1Ist
edition (2010)

4. Brunschwig, L., Campos-Lépez, R., Guerra, E., de Lara, J.:
Towards domain-specific modelling environments based on aug-
mented reality. In 43rd IEEE/ACM International Conference on
Software Engineering: New Ideas and Emerging Results, ICSE
(NIER) 2021, Madrid, Spain, May 25-28, 2021, pp. 56-60. IEEE
(2021)

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice. Synth. Lect. Softw. Eng. 3(1), 1-207
(2017)

6. Badreddin, O., Khandoker, R., Forward, A., Masmali, O., Leth-
bridge, T.C.: A decade of software design and modeling: A survey
to uncover trends of the practice. In: Wasowski, A., Paige, R.F.,
Haugen, @. (eds.), Proceedings of the 21th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and
Systems, MODELS 2018, Copenhagen, Denmark, October 1419,
2018, pp. 245-255. ACM (2018)

7. Bangor, A., Kortum, P., Miller, J.: Determining what individual sus
scores mean: adding an adjective rating scale. J. Usability Stud. 4,
114-123 (2009)

8. Boulila, N.: Supporting distributed software development with RD-
UML. Lecture Notes in Informatics. In GI-Edition (2002)

9. Brooke, J.: “SUS—a quick and dirty usability scale.” Usability
evaluation in industry. CRC Press, June (1996)

10. Casey, K., Exton, C.: A java 3d implementation of a geon based
visualisation tool for UML. In: Power, J.E., Waldron, J. (eds).,
Proceedings of the 2nd International Symposium on Principles
and Practice of Programming in Java, PPPJ 2003, Kilkenny City,
Ireland, June 16-18, 2003, volume 42 of ACM International Con-
ference Proceeding Series, pp. 63—65. ACM (2003)

11. Chen, W., Pedersen, R., Pettersen, @.: Colemo: a collaborative
learning environment for UML modelling. Interact. Learn. Env-
iron. 14(3), 233-249 (2006)

12. Dengel, A.: Seeking the treasures of theoretical computer science
education: towards educational virtual reality for the visualization
of finite state machines. In: 2018 IEEE International Conference
on Teaching, Assessment, and Learning for Engineering (TALE).
IEEE (2018)

13. Erickson, J., Siau, K.: Unified modeling language: theoretical and
practical complexity. In: 9th Americas Conference on Information
Systems, AMCIS 2003, Tampa, FL, USA, August 4-6, 2003, p.
164. Association for Information Systems (2003)

14. Exit Games. Pun—player networking. https://doc.photonengine.
com/en-us/pun/v2/demos-and- tutorials/pun-basics-tutorial/
player-networking (2021)

15. Ferenc, M., Polasek, 1., Vincur, J.: Collaborative modeling and
visualization of software systems using multidimensional UML. In:
IEEE Working Conference on Software Visualization, VISSOFT
2017, Shanghai, China, September 18—19, 2017, pp. 99-103. IEEE
(2017)

16. Greenwald, S.W., Corning, W., Maes, P.: Multi-user framework for
collaboration and co-creation in virtual reality. In: 12th Interna-
tional Conference on Computer Supported Collaborative Learning
(2017)

17. Google LLC. Google forms. https://www.google.de/intl/en/forms/
about/ (2021)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.asarif.com/notes/HypothesisTesting.html
https://www.asarif.com/notes/HypothesisTesting.html
https://www.genmymodel.com/
https://doc.photonengine.com/en-us/pun/v2/demos-and-tutorials/pun-basics-tutorial/player-networking
https://doc.photonengine.com/en-us/pun/v2/demos-and-tutorials/pun-basics-tutorial/player-networking
https://doc.photonengine.com/en-us/pun/v2/demos-and-tutorials/pun-basics-tutorial/player-networking
https://www.google.de/intl/en/forms/about/
https://www.google.de/intl/en/forms/about/

1424

E.Yigitbas et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.

Gogolla, M., Radfelder, O., Richters, M.: Towards three-
dimensional representation and animation of UML diagrams. In:
Proceedings of the 2nd International Conference on The Unified
Modeling Language: Beyond the Standard, UML’99, pp. 489-502.
Springer, Berlin (1999)

Gottschalk, S., Yigitbas, E., Schmidt, E., Engels, G.: Model-
based product configuration in augmented reality applications.
In: Bernhaupt, R., Ardito, C., Sauer, S. (eds.), Human-Centered
Software Engineering - 8th IFIP WG 13.2 International Working
Conference, HCSE 2020, Eindhoven, The Netherlands, Novem-
ber 30—December 2, 2020, Proceedings, volume 12481 of Lecture
Notes in Computer Science, pp. 84—104. Springer (2020)
Gottschalk, S., Yigitbas, E., Schmidt, E., Engels, G.: Proconar:
a tool support for model-based AR product configuration. In:
Bernhaupt, R., Ardito, C., Sauer, S. (eds.), Human-Centered Soft-
ware Engineering - 8th IFIP WG 13.2 International Working
Conference, HCSE 2020, Eindhoven, The Netherlands, Novem-
ber 30—December 2, 2020, Proceedings, volume 12481 of Lecture
Notes in Computer Science, pp. 207-215. Springer (2020)
Huotari, K., Hamari, J.: A definition for gamification: anchoring
gamification in the service marketing literature. Electron. Mark.
27(1),21-31 (2017)

Herpich, F., Jardim, R.R., Nunes, F.B., Voss, G.B., Fontoura, L.M.,
Medina, R.D.: Virtual lab: an immersive tool to assist in the teach-
ing of software engineering. In: 16th Symposium on Virtual and
Augmented Reality, SVR 2014, Piata Salvador, Bahia, Brazil, May
12-15, 2014, pp. 118-126. IEEE Computer Society (2014)
Jovanovikj, 1., Yigitbas, E., Sauer, S., Engels, G.: Augmented and
virtual reality object repository for rapid prototyping. In: Bern-
haupt, R., Ardito, C., Sauer, S. (eds.), Human-Centered Software
Engineering - 8th IFIP WG 13.2 International Working Con-
ference, HCSE 2020, Eindhoven, The Netherlands, November
30-December 2, 2020, Proceedings, volume 12481 of Lecture
Notes in Computer Science, pp. 216-224. Springer (2020)
Krings, S., Yigitbas, E., Jovanovikj, 1., Sauer, S., Engels, G.:
Development framework for context-aware augmented reality
applications. In: Bowen, J., Vanderdonckt, J., Winckler, M. (eds.),
EICS "20: ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, Sophia Antipolis, France, June 23-26, 2020,
pp- 9:1-9:6. ACM (2020)

Leyer, M., Brown, R., Aysolmaz, B., Vanderfeesten, 1., Turetken,
O.: 3d virtual world BPM training systems: process gateway exper-
imental results. In: Advanced Information Systems Engineering,
pp- 415-429. Springer International Publishing (2019)

Lucid Software Inc. Lucidchart. https://www.lucidchart.com/,
(December 2020)

Mclntosh, P., Hamilton, M.: X3D-UML: 3d UML mechatronic
diagrams. In: 21st Australian Software Engineering Conference
(ASWEC 2010), 6-9 April 2010, Auckland, New Zealand, pp. 85—
93. IEEE Computer Society (2010)

Mikkelsen, A., Honningsgy, S., Grgnli, T.-M., Ghinea, G.: Explor-
ing microsoft hololens for interactive visualization of UML dia-
grams. In: Proceedings of the 9th International Conference on
Management of Digital EcoSystems - MEDES *17. ACM Press
(2017)

Manakhov, P., Ivanov, V.D.: Defining usability problems. In: Pro-
ceedings of the 2016 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. ACM, May (2016)
Microsoft. Visio—the ultimate tool for diagramming. https://www.
microsoft.com/en-us/microsoft-365/visio/flowchart-software/
(2021)

Microsoft. Altspacevr. https://altvr.com (2022)

Maletic, J.I., Leigh, J., Marcus, A.: Visualizing software in an
immersive virtual reality environment. In: Proceedings of ICSE’01
Workshop on Software Visualization, pp. 12-13. Society Press
(2001)

@ Springer

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.
48.

49.

50.

51.

Maletic, J.I., Leigh, J., Marcus, A., Dunlap, G.: Visualizing
object-oriented software in virtual reality. In: Proceedings 9th Inter-
national Workshop on Program Comprehension. IWPC 2001. IEEE
Computer Society (2001)

Oberhauser, R., Pogolski, C., Matic, A.: VR-BPMN: Visualizing
BPMN models in virtual reality. In: Lecture Notes in Business
Information Processing, pp. 83-97. Springer International Publish-
ing (2018)

Petre, M.: UML in practice. In: Notkin, D., Cheng, B.H.C., Pohl,
K. (eds.), 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pp. 722—
731. IEEE Computer Society (2013)

Parong, J., Mayer, R.E.: Learning science in immersive virtual real-
ity. J. Educ. Psychol. 110(6), 785 (2018)

Pohler, L., Schuir, J., Liibbers, S., Teuteberg, F.: Enabling col-
laborative business process elicitation in virtual environments. In:
Shishkov, B. (ed.,) Business Modeling and Software Design - 10th
International Symposium, BMSD 2020, Berlin, Germany, July 6—
8, 2020, Proceedings, volume 391 of Lecture Notes in Business
Information Processing, pp. 375-385. Springer (2020)

Radfelder, O., Gogolla, M.: On better understanding uml diagrams
through interactive three-dimensional visualization and animation.
In: Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI’00, pp. 292-295, New York, NY, USA. Association
for Computing Machinery (2000)

Reuter, R., Hauser, F., Muckelbauer, D., Stark, T., Antoni, E., Mot-
tok, J., Wolff, C.: Using augmented reality in software engineering
education? First insights to a comparative study of 2D and AR
UML modeling. In: Proceedings of the 52nd Hawaii International
Conference on System Sciences. Hawaii International Conference
on System Sciences (2019)

Renger, M., Kolfschoten, G.L., de Vreede, G.-J.: Challenges in
collaborative modelling: a literature review and research agenda.
Int. J. Simul. Process Model. 4(3/4), 248-263 (2008)

Recker, J., West, S.: Collaborative business process modeling
using 3d virtual environments. In: Santana, M., Luftman, J.N.,
Vinze, A.S. (eds.), Sustainable IT Collaboration Around the Globe.
16th Americas Conference on Information Systems, AMCIS 2010,
Lima, Peru, August 12-15, 2010, pp. 249. Association for Infor-
mation Systems (2010)

Rodrigues, C.S.C., Werner, C.M.L., Landau, L.: VisAr3d: an inno-
vative 3D visualization of UML models. In: Proceedings of the
38th International Conference on Software Engineering Compan-
ion - ICSE "16. ACM Press (2016)

Sauro, J.: A practical guide to the system usability scale: back-
ground, benchmarks & best practices. Measuring Usability LLC,
Denver, Colorado (2011)

Seiger, R., Kiihn, R., Korzetz, M., ABmann, U.: Holoflows: mod-
elling of processes for the internet of things in mixed reality. Softw.
Syst. Model., 1-25 (2021)

Spatial. Spatial. https://spatial.io/ (2022)

The Campfire Union. Vrkeys. https://assetstore.unity.com/
packages/tools/input-management/vrkeys-99222 (2022)

Unity Technologies. Unity engine. https://unity.com (2021)

von Pilgrim, J., Duske, K.: Gef3d: a framework for two-, two-
and-a-half-, and three-dimensional graphical editors. In: Koschke,
R., Hundhausen, C.D., Telea, A.C. (eds.), Proceedings of the ACM
2008 Symposium on Software Visualization, Ammersee, Germany,
September 16-17, 2008, pp. 95-104. ACM (2008)

von Pilgrim, J., Duske, K., McIntosh, P.: Eclipse GEF3D: bringing
3d to existing 2d editors. Inf. Vis. 8(2), 107-119 (2009)
Whitehead, J.: Collaboration in software engineering: a roadmap.
In: Future of Software Engineering (FOSE ’07). IEEE (2007)
Walsh, K.R., Pawlowski, S.D.: Virtual reality: a technology in need
of is research. Commun. Assoc. Inf. Syst., 8(1):20 (2002)

https://www.lucidchart.com/
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software/
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software/
https://altvr.com
https://spatial.io/
https://assetstore.unity.com/packages/tools/input-management/vrkeys-99222
https://assetstore.unity.com/packages/tools/input-management/vrkeys-99222
https://unity.com

Design and evaluation of a collaborative UML modeling environment in virtual reality

1425

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Yigitbas, E., Gottschalk, S., Nowosad, A., Engels, G.: Develop-
ment and evaluation of a collaborative stock trading environment
in virtual reality (2022)

Yigitbas, E., Gorissen, S., Weidmann, N., Engels, G.: Collaborative
software modeling in virtual reality. In: 24th International Con-
ference on Model Driven Engineering Languages and Systems,
MODELS 2021, Fukuoka, Japan, October 10-15, 2021, pp. 261-
272. IEEE (2021)

Yigitbas, E., Jovanovikj, I., Engels, G.: Simplifying robot program-
ming using augmented reality and end-user development. CoRR
arXiv:2106.07944 (2021)

Yigitbas, E., Jovanovikj, I., Sauer, S., Engels, G.: On the devel-
opment of context-aware augmented reality applications. In:
Abdelnour-Nocera, J.L., Parmaxi, A., Winckler, M., Loizides, F.,
Ardito, C., Bhutkar, G., Dannenmann, P. (eds.), Beyond Interac-
tions - INTERACT 2019 IFIP TC 13 Workshops, Paphos, Cyprus,
September 2-6, 2019, Revised Selected Papers, volume 11930 of
Lecture Notes in Computer Science, pp. 107-120. Springer (2019)
Yigitbas, E., Jovanovikj, I., Scholand, J., Engels, G.: VR training for
warehouse management. In Teather, R.J., Joslin, C., Stuerzlinger,
W., Figueroa, P., Hu, Y., Batmaz, A.U., Lee, W., Ortega, E.R. (eds.),
VRST ’20: 26th ACM Symposium on Virtual Reality Software and
Technology, pp. 78:1-78:3. ACM (2020)

Yigitbas, E., Klauke, J., Gottschalk, S., Engels, G.: VREUD—an
end-user development tool to simplify the creation of interactive
VR scenes. CoRR arXiv:abs/2107.00377 (2021)

Yigitbas, E., Karakaya, K., Jovanovikj, 1., Engels, G.: Enhancing
human-in-the-loop adaptive systems through digital twins and VR
interfaces. In: 16th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS @ICSE
2021, Madrid, Spain, May 18-24, 2021, pp. 30-40. IEEE (2021)
Yigitbas, E., Schmidt, M., Bucchiarone, A., Gottschalk, S., Engels,
G.: Gamification-based UML learning environment in virtual real-
ity. In: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2022) (to
appear). ACM/IEEE (2022)

Yigitbas, E., Sauer, S., Engels, G.: Using augmented reality for
enhancing planning and measurements in the scaffolding business.
In: EICS "21: ACM SIGCHI Symposium on Engineering Interac-
tive Computing Systems, virtual, June 8—11, 2021. ACM (2021)
Yigitbas, E., Tejedor, C.B., Engels, G.: Experiencing and program-
ming the ENIAC in VR. In Alt, F,, Schneegass, S., Hornecker, E.
(eds)., Mensch und Computer 2020, pp. 505-506. ACM (2020)
Zenner, A., Makhsadov, A., Klingner, S., Liebemann, D., Kriiger,
A.: Immersive process model exploration in virtual reality. IEEE
Trans. Vis. Comput. Graph. 26(5), 2104-2114 (2020)

Zhang, B., Chen, Y.S.: Enhancing UML conceptual modeling
through the use of virtual reality. In: Proceedings of the 38th Annual
Hawaii International Conference on System Sciences. IEEE (2005)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Enes Yigitbas is currently interim
professor for human—computer inter-
action at Paderborn University. He
received his Ph.D. in computer
science from Paderborn Univer-
sity in 2019. His research interests
cover model-driven engineering,
human-computer interaction with
a special focus on augmented-,
mixed- and virtual-reality, as well
as self-adaptive software systems.

Simon Gorissen completed his
bachelor’s degree in computer sci-
ence between 2017 and 2021 at
Paderborn University. The focus
of his bachelor’s thesis was col-
laborative software modeling in
virtual reality. Currently, he is study-
ing in the computer science mas-
ter’s program at Paderborn Uni-
versity. He worked on the Smart
Headlamp Technology project of
the Heinz Nixdorf Institute between
2018 and 2020. Since 2021, he is
developing database-centric web
applications at the TEAM GmbH

near Paderborn alongside his studies.

Nils Weidmann works as post
doc researcher at Paderborn Uni-
versity. He received his Ph.D. in
computer science at Paderborn Uni-
versity in 2022. His research inter-
ests include triple graph gram-
mars, bidirectional transformations,
model-driven engineering, as well
as low-code development.

Gregor Engels holds the chair
of Database and Information Sys-
tems at Paderborn University, Ger-
many, since 1997. His research
areas include software engineer-
ing, focusing on model-based soft-
ware development, human-centric

computing, architectural styles, domain-

specific modeling languages, and
situational method engineering. He
is chairperson of the Software Inno-
vation Lab, the university part of
the technology transfer institute
Software Innovation Campus Pader-
born (SICP). He is member of the

Executive Board of Informatics Europe, a network organization of
computer science departments from whole Europe.

@ Springer

http://arxiv.org/abs/2106.07944
http://arxiv.org/2107.00377

	Design and evaluation of a collaborative UML modeling environment in virtual reality
	Abstract
	1 Introduction
	2 Related work
	2.1 Collaborative modeling
	2.2 3D modeling
	2.3 Immersive modeling in AR and VR
	2.4 Discussion

	3 Solution overview
	3.1 Virtual environment
	3.2 Network synchronization
	3.3 Virtual character
	3.4 3D models
	3.4.1 3D UML visualization
	3.4.2 Model editing

	3.5 VR text input

	4 Implementation
	4.1 VR devices
	4.2 Virtual environment
	4.3 Network synchronization
	4.4 Virtual character
	4.5 3D models
	4.5.1 3D UML visualization
	4.5.2 Model editing

	4.6 VR text input

	5 Evaluation
	5.1 Setup and participants
	5.2 Procedure
	5.3 Usability measurements
	5.4 Results
	5.4.1 Demographic statistics
	5.4.2 Efficiency
	5.4.3 Effectiveness
	5.4.4 User satisfaction
	5.4.5 Additional questionnaire results
	5.4.6 Discussion
	5.4.7 Threats to validity

	6 Conclusion and outlook
	References

